• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

流体方程式における特異摂動と安定性の数学解析

Research Project

Project/Area Number 20K03698
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionKyoto University

Principal Investigator

前川 泰則  京都大学, 理学研究科, 教授 (70507954)

Project Period (FY) 2020-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords偏微分方程式 / ナヴィエ・ストークス方程式 / 境界層 / Navier-Stokes方程式 / 漸近解析 / 流体力学 / 解の漸近挙動 / 特異極限 / 安定性
Outline of Research at the Start

流体方程式に対する特異極限問題に関連した,次の研究を行う.I.粘性消滅極限における境界層の安定性:Navier-Stokes方程式の粘性消滅極限問題について,一般の凸非シアー型境界層の粘性消滅極限における安定性をGevrey指数3/2クラスの関数空間で実現することを目指す.II. 橋脚周りの流れの安定性:橋脚周りの川の流れのように一様背後流の中に長い柱状物体をおいた際に現れる接触点を伴うOseen流に関する自由境界問題の数学解析を行う.一様背後流が遅い場合の平衡状態の一意存在定理とその擾乱に対する安定性定理の確立を目指す.

Outline of Annual Research Achievements

昨年度に引き続き、Navier-Stokes方程式の境界層に関連した数学的研究を行った。流体と固体壁との相対速度が零となる粘着境界条件が満たされる場合には、境界付近において高いReynolds数を反映したPrandtl境界層が典型的に現れ、境界層に潜在する強い微分損失構造により、境界層近傍において解の定量的評価を確立することが難しくなる。境界層構造を記述するPrandtl方程式の改良版としてTriple deckモデルが知られている。このモデルの線形化問題の時間局所可解性について、凸shear型の境界層の周りにおいては、Gevreyの3/2クラスでの可解性が成り立つことを証明し、国際共著論文としてまとめて査読付き国際誌に受理された。さらに、Triple deckモデルの定常問題について研究を行い、特殊解であるクエット流のlocal rigidityを示すことに成功した。証明では、方程式の持つ自然なスケール臨界空間を足掛かりにするとともに、鉛直方向の一次増大項からくる困難を取り除く変換を導入するとともに、方程式に付随する非局所境界条件に由来する楕円型平滑化効果を見出したことが大きな鍵となっている。これまでのところTriple deckモデルの定常問題に関する数学的な結果はほとんど知られておらず、本研究が先駆的なものになると思われる。この研究成果は、共著論文として査読付国際誌への投稿を準備している。このほか、外力付きの定常問題の可解性を調べるために必要となる関数空間の設定についても考察を行った。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

固定壁近傍の流れにおいて現れる境界層と関係するTriple deckモデルの定常問題に進展があったため。

Strategy for Future Research Activity

境界層のTriple deckモデルの定常問題については、外力がある場合の可解性といった基本的な問題が未解決なので、研究を進めている。昨年度に得られたlocal rigidityの証明で得られた知見を活かせると思われる。また、Navier-Stokes方程式の初期値問題の解の非一意性を境界層の立場から研究することは意義深いと思われる。

Report

(4 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (30 results)

All 2024 2023 2022 2021 2020 Other

All Int'l Joint Research (6 results) Journal Article (8 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 8 results,  Open Access: 3 results) Presentation (15 results) (of which Int'l Joint Research: 12 results,  Invited: 15 results) Funded Workshop (1 results)

  • [Int'l Joint Research] Universite Paris Cite(フランス)

    • Related Report
      2023 Research-status Report
  • [Int'l Joint Research] University of California, Davis(米国)

    • Related Report
      2023 Research-status Report
  • [Int'l Joint Research] IMJ-PRG(フランス)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] パリ第7大学(フランス)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] パリ第7大学(フランス)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] クーラン研究所(米国)

    • Related Report
      2020 Research-status Report
  • [Journal Article] Improved Well-Posedness for the Triple-Deck and Related Models via Concavity2023

    • Author(s)
      Gerard-Varet David、Iyer Sameer、Maekawa Yasunori
    • Journal Title

      Journal of Mathematical Fluid Mechanics

      Volume: 25 Issue: 3

    • DOI

      10.1007/s00021-023-00809-4

    • Related Report
      2023 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Existence of the stationary Navier-Stokes flow in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> around a radial flow2023

    • Author(s)
      Maekawa Yasunori、Tsurumi Hiroyuki
    • Journal Title

      Journal of Differential Equations

      Volume: 350 Pages: 202-227

    • DOI

      10.1016/j.jde.2022.12.043

    • Related Report
      2023 Research-status Report 2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Rate of the Enhanced Dissipation for the Two-jet Kolmogorov Type Flow on the Unit Sphere2022

    • Author(s)
      Maekawa Yasunori、Miura Tatsu-Hiko
    • Journal Title

      Journal of Mathematical Fluid Mechanics

      Volume: 24 Issue: 3

    • DOI

      10.1007/s00021-022-00718-y

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Characterization of dissipative structures for first-order symmetric hyperbolic system with general relaxation2021

    • Author(s)
      Yasunori Maekawa and Yoshihiro Ueda
    • Journal Title

      Mathematics

      Volume: 9 Issue: 7 Pages: 728-728

    • DOI

      10.3390/math9070728

    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Gevrey stability of Rayleigh boundary layer in the inviscid limit2021

    • Author(s)
      Maekawa Yasunori
    • Journal Title

      Journal of Elliptic and Parabolic Equations

      Volume: 7 Issue: 2 Pages: 417-438

    • DOI

      10.1007/s41808-021-00128-7

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Note on smoothing estimates for Kolmogorov type equations2021

    • Author(s)
      Maekawa Yasunori
    • Journal Title

      Partial Differential Equations and Applications

      Volume: 2 Issue: 6 Pages: 1-12

    • DOI

      10.1007/s42985-021-00135-2

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] On stability of physically reasonable solutions to the two-dimensional Navier-Stokes equations2021

    • Author(s)
      Y. Maekawa
    • Journal Title

      Journal of the Institute of Mathematics of Jussieu

      Volume: 20 Issue: 2 Pages: 517-568

    • DOI

      10.1017/s1474748019000240

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Estimates for the Navier-Stokes equations in the half-space for nonlocalized data2020

    • Author(s)
      Maekawa Yasunori、Miura Hideyuki、Prange Christophe
    • Journal Title

      Analysis & PDE

      Volume: 13 Issue: 4 Pages: 945-1010

    • DOI

      10.2140/apde.2020.13.945

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Optimal rate of convergence to nondegenerate asymptotic profiles for fast diffusion2024

    • Author(s)
      前川泰則
    • Organizer
      Saga Workshop on Partial Differential Equations
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] Optimal rate of convergence to nondegenerate asymptotic profiles for fast diffusion2023

    • Author(s)
      Y. Maekawa
    • Organizer
      国際研究集会``Harmonic Analysis and Nonlinear Partial Differential Equations"
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Optimal rate of convergence to nondegenerate asymptotic profiles for fast diffusion2023

    • Author(s)
      Y. Maekawa
    • Organizer
      国際研究集会``Recent Advances in Nonlinear PDEs and their Applications in Celebration of the 60th Anniversary of CUHK"
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Optimal rate of convergence to nondegenerate asymptotic profiles for fast diffusion2023

    • Author(s)
      Y. Maekawa
    • Organizer
      国際研究集会``Critical Phenomena in Nonlinear Partial Differential Equations, Harmonic Analysis, and Functional Inequalities"
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the stability of the boundary layer in the inviscid limit for the Navier-Stokes flows2023

    • Author(s)
      Y. Maekawa
    • Organizer
      国際研究集会``NCTS-Kyoto Mathematics Symposium"
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the solvability of the linearized Triple-Deck system2023

    • Author(s)
      Y. Maekawa
    • Organizer
      Analysis of fluid dynamical PDEs
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the solvability of the linearized Triple-Deck system2022

    • Author(s)
      Y. Maekawa
    • Organizer
      The 8th Japan-China Workshop on Mathematical Topics
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Gevrey stability of Rayleigh boundary layer in the inviscid limit2021

    • Author(s)
      Yasunori Maekawa
    • Organizer
      Fudan International Seminar on Analysis, PDEs, and Fluid mechanics
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Recent progress on the Prandtl boundary layer expansion for viscous incompressible flows2021

    • Author(s)
      Yasunori Maekawa
    • Organizer
      Asia-Pacific Analysis and PDE Seminar
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Gevrey stability of Rayleigh boundary layer in the inviscid limit2021

    • Author(s)
      Yasunori Maekawa
    • Organizer
      Colloquium talk at Institute of Natural Sciences/School of Math at SJTU
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Algebraic characterization on the dissipative structure of the first-order symmetric hyperbolic system with general relaxation2021

    • Author(s)
      Yasunori Maekawa
    • Organizer
      International Workshop on Recent Advances in Nonlinear PDEs
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Rayleigh 境界層周りにおける Prandtl 境界層展開につ いて2021

    • Author(s)
      前川泰則
    • Organizer
      北海道大学 偏微分方程式セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Stability of the Prandtl boundary layer in the inviscid limit2021

    • Author(s)
      Y. Maekawa
    • Organizer
      Online Workshop for Nonlinear Partial Differential Equations (online),Kobe University
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Prandtl boundary layer expansion in a Gevrey class around concave boundary layer2020

    • Author(s)
      Y. Maekawa
    • Organizer
      International Workshop on Multiphase Flows (online), Waseda University
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Prandtl boundary layer expansion in a Gevrey class around concave boundary layer2020

    • Author(s)
      Y. Maekawa
    • Organizer
      Vorticity, Rotation and Symmetry (V) - Global Results and Nonlocal Phenomena (online),CIRM,Luminy
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Funded Workshop] Mathematical Analysis of Viscous Incompressible Fluid2021

    • Related Report
      2021 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi