Project/Area Number |
20K07868
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 52020:Neurology-related
|
Research Institution | The University of Tokushima |
Principal Investigator |
FUJITA Koji 徳島大学, 大学院医歯薬学研究部(医学域), 講師 (80601765)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | ジストニア / 磁気共鳴画像 / MRI / fMRI / 安静時機能的磁気共鳴画像 |
Outline of Research at the Start |
ジストニアの診断は主に症状によるため、臨床医によるばらつきが大きいことが課題である。そのため、診断や病勢評価に活かせる客観的なマーカーが求められている。画像検査として、安静時機能的磁気共鳴画像の活用が期待されている。本研究ではジストニアにおける安静時機能的ネットワークの解明と白質微細構造情報の統合をめざす。本研究の成果は神経画像バイオマーカーの開発に広く寄与する。
|
Outline of Final Research Achievements |
The diagnosis of dystonia relies primarily on symptomatology, which can be problematic because of the high variability among clinicians. Therefore, there is a need for objective markers that can be utilized for diagnosis and disease assessment. In imaging studies, resting-state functional magnetic resonance imaging (fMRI) is expected to be utilized. However, resting-state fMRI is difficult to quantify on an individual patient level. To solve this problem, the principal investigator has developed a novel method to determine and quantify disease-related networks using independent component analysis and bootstrapping in resting-state fMRI. In this study, the method was applied to dystonia to detect and quantify resting-state functional networks. The independent component analysis-bootstrap method was used to identify the networks and quantify their expression.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究はジストニアを対象としているが、ジストニアと同様に従来のMRI検査で明らかな異常を認めない多くの神経精神疾患に応用できる可能性がある。例えば、パーキンソン病の診断に直結する所見は従来のMRIでは認めがたい。また、多系統萎縮症、進行性核上性麻痺、大脳皮質基底核症候群などのパーキンソン症候群も、病初期などは従来のMRIで異常を認めないことがしばしばある。これらの疾患では安静時fMRIなどにおける変化が報告されているが、バイオマーカーとしてはいまだ確立していない。したがって、本研究の成果は神経画像バイオマーカーの開発に広く貢献することが見込まれる。
|