• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Use of digital PET and deep learning for simultaneous quantification of tumor blood flow and metabolism from FDG PET

Research Project

Project/Area Number 20K08015
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionHokkaido University

Principal Investigator

Hirata Kenji  北海道大学, 医学研究院, 准教授 (30431365)

Co-Investigator(Kenkyū-buntansha) 竹内 啓  北海道大学, 医学研究院, 助教 (30374515)
真鍋 治  東京医科歯科大学, 医学部附属病院, 特任助教 (40443957)
久下 裕司  北海道大学, アイソトープ総合センター, 教授 (70321958)
Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords核医学 / 人工知能 / deep learning / PET / FDG / FDG-PET/CT / 糖代謝 / 血流 / deep neural network / ポジトロン断層法 / 定量 / O-15水 / 腫瘍
Outline of Research at the Start

F-18 FDGはブドウ糖代謝を測定するポジトロン断層法(PET)製剤であるが、本研究ではFDGを用いて腫瘍の糖代謝と血流定量の同時計測を目指す。今回我々は、高い空間分解能を持つ半導体PETと、機械学習の一種であるdeep neural network (DNN)を利用して、それぞれの問題を克服することを目指す。高い空間分解能は小さい血管からのAIF取得に役立ち、DNNはコンパートメントモデル・フリーで直接血流を予測するregressorとなりうる。血流のgold standardとしては、O-15標識水によるPETで測定した血流値を使用する。

Outline of Final Research Achievements

In the current study, by introducing two innovative technologies, semiconductor PET and deep neural network (DNN), we aimed to realize simultaneous quantification of tumor glucose metabolism and blood flow from single FDG-PET study. This study consisted of 4 parts. (1) PET data of O-15 labeled water were analyzed using a compartment model to obtain quantitative values of pulmonary blood flow. (2) We obtained POC to use SUVmax of FDG PET as an identifier of lesions, and developed a method to efficiently convert a huge amount of data consisting of pairs of existing images and corresponding reports into training dataset of supervised learning. (3) We developed an AI system to predict axillary lymph node metastasis of breast cancer using CNN and showed its clinical usefulness. (4) We constructed a super-resolution CNN using semiconductor PET images.

Academic Significance and Societal Importance of the Research Achievements

本研究ではAIによって核医学検査の有用性を高めうることを示した。レポートに記載されたSUVmaxを識別子として利用する手法は、既存のレポートと画像の組から膨大な教師データを効率よく作成することで、次世代の診断補助AIの開発を促進できる。乳癌の腋窩リンパ節転移をPET画像から予測するAIの研究では、一定レベル以上のAIを使用すれば専門医であってもさらに診断能の向上が得られる(AIから恩恵を得られる)ことを示した。また、AIを用いた超解像モデルの開発では、高解像度のPET画像を一定数集めて教師データとすれば、普及価格帯のPET-CT装置から高解像度のPET画像が得られる可能性があることを示した。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (15 results)

All 2023 2022 2021 2020 Other

All Journal Article (7 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 7 results,  Open Access: 5 results) Presentation (5 results) (of which Int'l Joint Research: 4 results,  Invited: 1 results) Book (1 results) Remarks (2 results)

  • [Journal Article] Four-dimensional quantitative analysis using FDG-PET in clinical oncology2023

    • Author(s)
      Tamaki Nagara、Hirata Kenji、Kotani Tomoya、Nakai Yoshitomo、Matsushima Shigenori、Yamada Kei
    • Journal Title

      Japanese Journal of Radiology

      Volume: - Issue: 8 Pages: 831-842

    • DOI

      10.1007/s11604-023-01411-4

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Artificial intelligence for nuclear medicine in oncology2022

    • Author(s)
      Hirata Kenji、Sugimori Hiroyuki、Fujima Noriyuki、Toyonaga Takuya、Kudo Kohsuke
    • Journal Title

      Annals of Nuclear Medicine

      Volume: 36 Issue: 2 Pages: 123-132

    • DOI

      10.1007/s12149-021-01693-6

    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Effect of radioactivity outside the field of view on image quality of dedicated breast positron emission tomography: preliminary phantom and clinical studies2022

    • Author(s)
      Satoh Yoko、Imai Masamichi、Ikegawa Chihiro、Hirata Kenji、Abo Norifumi、Kusuzaki Mao、Oyama-Manabe Noriko、Onishi Hiroshi
    • Journal Title

      Annals of Nuclear Medicine

      Volume: 36 Issue: 12 Pages: 1010-1018

    • DOI

      10.1007/s12149-022-01789-7

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] DWI-related texture analysis for prostate cancer: differences in correlation with histological aggressiveness and data repeatability between peripheral and transition zones2022

    • Author(s)
      Tsuruta Chie、Hirata Kenji、Kudo Kohsuke、Masumori Naoya、Hatakenaka Masamitsu
    • Journal Title

      European Radiology Experimental

      Volume: 6 Issue: 1

    • DOI

      10.1186/s41747-021-00252-y

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Development and validation of a prediction model based on the organ-based metabolic tumor volume on FDG-PET in patients with differentiated thyroid carcinoma2021

    • Author(s)
      Uchiyama Yuko、Hirata Kenji、Watanabe Shiro、Okamoto Shozo、Shiga Tohru、Okada Kazufumi、Ito Yoichi M.、Kudo Kohsuke
    • Journal Title

      Annals of Nuclear Medicine

      Volume: 35 Issue: 11 Pages: 1223-1231

    • DOI

      10.1007/s12149-021-01664-x

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Preliminary study of AI-assisted diagnosis using FDG-PET/CT for axillary lymph node metastasis in patients with breast cancer2021

    • Author(s)
      Li Zongyao、Kitajima Kazuhiro、Hirata Kenji、Togo Ren、Takenaka Junki、Miyoshi Yasuo、Kudo Kohsuke、Ogawa Takahiro、Haseyama Miki
    • Journal Title

      EJNMMI Research

      Volume: 11 Issue: 1 Pages: 10-10

    • DOI

      10.1186/s13550-021-00751-4

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A preliminary study to use SUVmax of FDG PET-CT as an identifier of lesion for artificial intelligence2021

    • Author(s)
      Kenji Hirata, Osamu Manabe, Keiichi Magota, Sho Furuya, Tohru Shiga, Kohsuke Kudo
    • Journal Title

      Frontiers in Medicine

      Volume: in press

    • DOI

      10.3389/fmed.2021.647562

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Combination of image and its report of FDG-PET/CT to generate probability map of anatomical terms using SUVmax as a bridge between text and image2022

    • Author(s)
      Kenji Hirata, Shiro Watanabe, Junki Takenaka, Rina Kimura, Yuko Uchiyama, Keiichi Magota, Kohsuke Kudo
    • Organizer
      Society of Nuclear Medicine and Molecular Imaging
    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] How should nuclear medicine specialists collaborate with AI?2022

    • Author(s)
      Kenji Hirata
    • Organizer
      13th Congress of the World Federation of Nuclear Medicine and Biology
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] FDG-PET/CTのレポート上のSUVmaxを利用して解剖学用語を機械学習させる検討2021

    • Author(s)
      平田健司、渡邊史郎、内山裕子、竹中淳規、木村理奈、眞島隆成、 孫田恵一、工藤與亮
    • Organizer
      第61回日本核医学会学術総会
    • Related Report
      2021 Research-status Report
  • [Presentation] SUVmax described in FDG PET-CT reports can provide information of tumor location: an investigation of real-world data2021

    • Author(s)
      Kenji Hirata, Yuko Uchiyama, Shiro Watanabe, Sho Furuya, Kohsuke Kudo
    • Organizer
      Society of Nuclear Medicine and Molecular Imaging
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] A new role of SUVmax on FDG PET-CT as an identifier of the tumor in the era of AI2020

    • Author(s)
      Kenji Hirata, Osamu Manabe, Keiichi Magota, Sho Furuya, Tohru Shiga, Kohsuke Kudo
    • Organizer
      Society of Nuclear Medicine and Molecular Imaging
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Book] わかりやすい核医学2022

    • Author(s)
      玉木長良、平田健司、真鍋 治
    • Total Pages
      336
    • Publisher
      文光堂
    • ISBN
      9784830637643
    • Related Report
      2022 Annual Research Report
  • [Remarks] Metavolの紹介ページ

    • URL

      https://www.metavol.org/

    • Related Report
      2022 Annual Research Report
  • [Remarks] 北海道大学病院医療AI研究開発センターのプロジェクトページ

    • URL

      https://ai.huhp.hokudai.ac.jp/project/

    • Related Report
      2022 Annual Research Report

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi