• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Multi-valued Gaussian process regression for immediate Tsunami prediction from water pressure gauges

Research Project

Project/Area Number 20K11949
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

Igarashi Yasuhiko  筑波大学, システム情報系, 准教授 (40733085)

Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Keywords機械学習 / スパースモデリング / 深層学習 / 津波高即時予測 / 即時津波高予測 / べき乗則 / 多層パーセプトロン / ガウス過程回帰 / 海底地震 / 能動学習 / 海底地震津波観測網
Outline of Research at the Start

津波高の即時予測において,予め津波シミュレーションを多数のシナリオについて計算しデータベースを用いた予測が行われている.従来の最適なシナリオをデータベースから検索して津波予測をする場合,シミュレーションで仮定しているシナリオの仮定は実際のシナリオと乖離してしまう.そこで本研究課題では,シナリオ混合による広範囲の津波高即時予測の精緻化を機械学習によって行い,徳島県での津波予測システムのプロトタイプに組み込みを目指す.

Outline of Final Research Achievements

In this study, we conducted research to refine the tsunami simulation and to improve the accuracy of immediate prediction of tsunami heights in a wide range by scenario mixing using multi-level Gaussian process regression, and to promote the practical application of the scenario mixing approach. Specifically, first, to improve the accuracy of tsunami height prediction, we conducted tsunami simulations with a non-uniform slip distribution that could exist in reality. Secondly, the maximum tsunami height and the arrival time of the tsunami at the sea bottom pressure sensor off the Kii Peninsula were used to predict the coastal tsunami height with high accuracy by Gaussian process regression. Finally, for emergency response to a major tsunami disaster, we constructed a prediction model for tsunami inundation depth estimation using deep learning to estimate the inundation depth of land for rescue operations.

Academic Significance and Societal Importance of the Research Achievements

今回構築した津波高予測のための高精度シミュレーション及び、津波高即時予測手法は,高速計算や大規模データベースを必要としない,軽量で堅牢な予測システムを構築できる.現在,大規模な津波予測システムが主流になりつつあるが,大災害時の不測の事態を緩和するためにこのようなスタンドアロン型の予測システムを持つことは有益であると考えている.

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (4 results)

All 2022 2020

All Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (2 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Numerical experiments on tsunami flow depth prediction for clustered areas using regression and machine learning models2022

    • Author(s)
      Masato Kamiya, Yasuhiko Igarashi, Masato Okada & Toshitaka Baba
    • Journal Title

      Earth, Planets and Space

      Volume: 74 Issue: 1

    • DOI

      10.1186/s40623-022-01680-9

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Self-similar stochastic slip distributions on a non-planar fault for tsunami scenarios for megathrust earthquakes2020

    • Author(s)
      Masaru Nakano, Shane Murphy, Ryoichiro Agata, Yasuhiko Igarashi, Masato Okada & Takane Hori
    • Journal Title

      Progress in Earth and Planetary Science

      Volume: 7 Issue: 1 Pages: 1-13

    • DOI

      10.1186/s40645-020-00360-0

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] 紀伊半島沖の海底水圧センサにおける最大津波高さと到達時間を用いたガウス過程回帰による沿岸津波高さ予測2022

    • Author(s)
      岩淵 雄太郎、馬場 俊孝、堀 高峰、岡田 真人、五十嵐 康彦
    • Organizer
      Japan Geoscience Union Meeting 2022
    • Related Report
      2022 Annual Research Report
  • [Presentation] Tsunami Height Estimation by Gaussian Processing Regression Using Tsunami Height and Arrival Time at Seafloor Pressure Measurement Points in the Kii Peninsula, Japan2022

    • Author(s)
      Yutaro IWABUCHI, Toshitaka BABA, Takane HORI, Masato OKADA, Yasuhiko IGARASHI
    • Organizer
      AOGS
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi