• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development and Implementation of Real World Scale Artificial Evolutionary Algorithms

Research Project

Project/Area Number 20K11967
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61040:Soft computing-related
Research InstitutionHokkaido University

Principal Investigator

Munetomo Masaharu  北海道大学, 情報基盤センター, 教授 (00281783)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords進化計算 / リンケージ同定 / 協調共進化 / ハイパーヒューリスティクス / 多目的最適化 / 並列化 / 合成人口モデル / ニューロエボリューション / 多目的進化計算 / 軌道最適化問題 / 大規模大域的最適化 / 並列分散アルゴリズム
Outline of Research at the Start

実世界の数万~数十億変数を有する大規模かつ複雑な最適化問題を解決する人工進化アルゴリズム「実世界スケール人工進化アルゴリズム」を開発する。そのために、進化計算におけるリンケージ同定等の遺伝子解析手法や、協調共進化の枠組みにおいて、人工知能や機械学習の手法を導入することで、ロバストかつスケーラブルなアルゴリズムを開発し、スーパーコンピュータや広域分散インタークラウド環境への大規模並列実装を行う。

Outline of Final Research Achievements

In this research, we seek for realizing artificial evolutionary algorithms to solve large-scale global optimization problems. Based on linkage identification techniques and cooperative coevolution algorithms, we conducted extensive research and development of evolutionary algorithms, including scalable linkage identification, introduction of linkage measurement functions and minimization of linkage measures, and variable grouping methods based on dependency matrices.

In addition, to address problems caused by high computational costs required for fitness evaluation, we developed hyper-heuristics algorithms construction surrogate models, and algorithms inspired by biological and physical phenomena. We verified their effectiveness in major benchmarking functions and engineering optimization problems.

Academic Significance and Societal Importance of the Research Achievements

本研究では、これまで研究代表者を中心に開発を進めてきたリンケージ同定や、進化計算の分野において近年活発に研究が進められている協調共進化の手法を発展させることで、大規模大域的最適化問題の効果的な解法を実現する。さらに評価関数自体の計算にコストを要する問題についても対応することで、解評価にシミュレーションを行うような設計最適化問題にも対応可能である。
大規模かつ複雑な相互作用を有する大域的最適化問題を解決することは、現実社会に存在するさまざまな問題の解決に不可欠である。本研究で開発したアルゴリズムが、ベンチマーク問題だけではなくエンジニアリング最適化でも効果が得られており、今後の展開が期待される。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (17 results)

All 2024 2023 2022 2021 2020 Other

All Int'l Joint Research (1 results) Journal Article (10 results) (of which Peer Reviewed: 6 results,  Open Access: 7 results) Presentation (6 results) (of which Int'l Joint Research: 2 results)

  • [Int'l Joint Research] The University of Adelaide(オーストラリア)

    • Related Report
      2020 Research-status Report
  • [Journal Article] SRIME: a strengthened RIME with Latin hypercube sampling and embedded distance-based selection for engineering optimization problems2024

    • Author(s)
      Zhong Rui、Yu Jun、Zhang Chao、Munetomo Masaharu
    • Journal Title

      Neural Computing and Applications

      Volume: 36 Issue: 12 Pages: 6721-6740

    • DOI

      10.1007/s00521-024-09424-4

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Surrogate Ensemble-Assisted Hyper-Heuristic Algorithm for Expensive Optimization Problems2023

    • Author(s)
      Zhong Rui、Yu Jun、Zhang Chao、Munetomo Masaharu
    • Journal Title

      International Journal of Computational Intelligence Systems

      Volume: 16 Issue: 1 Pages: 169-169

    • DOI

      10.1007/s44196-023-00346-y

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Cooperative coevolutionary surrogate ensemble-assisted differential evolution with efficient dual differential grouping for large-scale expensive optimization problems2023

    • Author(s)
      Zhong Rui, Zhang Enzhi, Munetomo Masaharu
    • Journal Title

      Complex & Intelligent Systems

      Volume: 10 Issue: 2 Pages: 2129-2149

    • DOI

      10.1007/s40747-023-01262-6

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Cooperative coevolutionary differential evolution with linkage measurement minimization for large-scale optimization problems in noisy environments2023

    • Author(s)
      Zhong Rui、Zhang Enzhi、Munetomo Masaharu
    • Journal Title

      Complex & Intelligent Systems

      Volume: 1 Issue: 4 Pages: 1-18

    • DOI

      10.1007/s40747-022-00957-6

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Cooperative Coevolutionary NSGA-II with Linkage Measurement Minimization for?Large-Scale Multi-objective Optimization2023

    • Author(s)
      Zhong Rui、Munetomo Masaharu
    • Journal Title

      Evolutionary Multi-Criterion Optimization

      Volume: 1 Pages: 43-55

    • DOI

      10.1007/978-3-031-27250-9_4

    • ISBN
      9783031272493, 9783031272509
    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Accelerating differential evolution algorithm with Gaussian sampling based on estimating the convergence points2022

    • Author(s)
      Rui Zhong, Masaharu Munetomo
    • Journal Title

      arxiv.org

      Volume: 2208.14619 Pages: 1-6

    • Related Report
      2022 Research-status Report
    • Open Access
  • [Journal Article] Cooperative coevolutionary Modified Differential Evolution with Distance-based Selection for Large-Scale Optimization Problems in noisy environments through an automatic Random Grouping2022

    • Author(s)
      Rui Zhong, Masaharu Munetomo
    • Journal Title

      arxiv.org

      Volume: 2209.00777 Pages: 1-16

    • Related Report
      2022 Research-status Report
    • Open Access
  • [Journal Article] Accelerating the Genetic Algorithm for Large-scale Traveling Salesman Problems by Cooperative Coevolutionary Pointer Network with Reinforcement Learning2022

    • Author(s)
      Rui Zhong, Enzhi Zhang, Masaharu Munetomo
    • Journal Title

      arxiv.org

      Volume: 2209.133077 Pages: 1-7

    • Related Report
      2022 Research-status Report
    • Open Access
  • [Journal Article] GTOPX space mission benchmarks2021

    • Author(s)
      Schlueter Martin、Neshat Mehdi、Wahib Mohamed、Munetomo Masaharu、Wagner Markus
    • Journal Title

      SoftwareX

      Volume: 14 Pages: 100666-100666

    • DOI

      10.1016/j.softx.2021.100666

    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] ローグライクゲームにおける多目的神経進化に基づくモジュラーネットワークの導入2021

    • Author(s)
      高橋 寿徳, 棟朝 雅晴
    • Journal Title

      情報処理学会研究報告数理モデル化と問題解決(MPS)

      Volume: 2021-MPS-132 Pages: 1-6

    • Related Report
      2020 Research-status Report
  • [Presentation] A comprehensive performance investigation of metaheuristic algorithms in the adversarial robustness neural architecture search2024

    • Author(s)
      鐘 睿, 余 俊, 張 潮, 棟朝 雅晴
    • Organizer
      第25回進化計算学会研究会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Adjacent Intensity Matrix with Linkage Identification for Large-Scale Optimization in Noisy Environments2023

    • Author(s)
      Zhong Rui, Tu Binan, Zhang Enzhi, Munetomo Masaharu
    • Organizer
      IEEE CEC (Congress on Evolutionary Computation) 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Hierarchical Cooperative Coevolutionary Approach to Solve Very Large-Scale Traveling Salesman Problem2023

    • Author(s)
      Zhong Rui, Zhang Enzhi, Munetomo Masaharu
    • Organizer
      OLA (Optimization and Learning Algorithm) 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Accelerating the Evolutionary Algorithms by Gaussian Process Regression with epsilon-greedy acquisition function2022

    • Author(s)
      Rui Zhong, Enzhi Zhang, Masaharu Munetomo
    • Organizer
      進化計算シンポジウム 2022
    • Related Report
      2022 Research-status Report
  • [Presentation] 並列リンケージ同定を用いた合成人口データの生成に関する検討2021

    • Author(s)
      細川喜生, 棟朝雅晴
    • Organizer
      進化計算シンポジウム 2021
    • Related Report
      2021 Research-status Report
  • [Presentation] 参照点に基づく多目的最適化を導入した神経進化によるローグライクゲームの戦略学習の検討2020

    • Author(s)
      高橋 寿徳,棟朝 雅晴
    • Organizer
      進化計算シンポジウム2020
    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi