• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Spatial regression modeling estimating a wide variety of effects from diverse data

Research Project

Project/Area Number 20K13261
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 04010:Geography-related
Research InstitutionThe Institute of Statistical Mathematics

Principal Investigator

Murakami Daisuke  統計数理研究所, 統計基盤数理研究系, 准教授 (20738249)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords時空間回帰 / 非ガウスデータ / 高速化 / spmoran / 固有ベクトル空間フィルタリング / モデル選択 / 空間統計 / 加法モデル / カウントデータ / COVID-19 / 空間回帰 / 加法混合モデル / 大規模データ / 時空間モデリング
Outline of Research at the Start

本研究では、申請者らの独自手法random effects eigenvector spatial filtering(RESF)を拡張することで、多様・大規模な空間データのための空間回帰手法を幅広く開発・整備する。また、標本数が増えても推定の計算量が変わらないというRESFの特性を活かし、データの背後に潜む空間・非空間効果を高速に推定・識別する方法を開発する。開発した手法は統計ソフトRのパッケージ上などで順次公開し、ユーザーからの意見などを参考に更新を重ねることで、地理情報に関連する幅広い研究者・実務者に利用されるパッケージとしていくことを目指す。

Outline of Final Research Achievements

This study developped spatio-temporal regression models for estimating (a) diverse effects from (b) diverse data, and implemented the developped methods in packages in a free statistical software R. Regarding (a), spatial regression was extended to allow automatic estimation of data distributions by introducing a compositional transformation function. It was confirmed that the developped method flexibly handle a wide range of data distributions, including Box-Cox and Tukey g-and-h distributions. Regarding (b), we developed a new spatio-temporal model that can handle spatial, temporal, and spatio-temporal correlations on multiple time axes simultaneously. The usefulness of the methods developed in (a) and (b) was confirmed by applying them to a wide range of real-world data, including residential land prices, the number of crimes, and the number of positive Covid-19 cases.

Academic Significance and Societal Importance of the Research Achievements

既存の空間統計手法の多くは、ガウス過程に依拠したものであり結果的に計算コストや柔軟性に課題が残されていた。本研究では、それらの課題に対処して、計算コストを維持しながら幅広いデータと効果を扱えるように空間統計手法を拡張するものであり、同分野の発展に寄与する学術的意義の大きい研究である。また開発手法をフリーの統計ソフトウェアRのパッケージを通して公開しており、地理情報に関する実務者・研究者を、手法提供の観点で支える社会的意義の大きな研究である。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (30 results)

All 2024 2023 2022 2021 2020 Other

All Int'l Joint Research (1 results) Journal Article (9 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 9 results,  Open Access: 7 results) Presentation (19 results) (of which Int'l Joint Research: 7 results,  Invited: 5 results) Book (1 results)

  • [Int'l Joint Research] テキサス大学ダラス校(米国)

    • Related Report
      2021 Research-status Report
  • [Journal Article] Sub‐Model Aggregation for Scalable Eigenvector Spatial Filtering: Application to Spatially Varying Coefficient Modeling2024

    • Author(s)
      Murakami Daisuke、Sugasawa Shonosuke、Seya Hajime、Griffith Daniel A.
    • Journal Title

      Geographical Analysis

      Volume: 1 Issue: 4 Pages: 1-1

    • DOI

      10.1111/gean.12393

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] A linearization for stable and fast geographically weighted Poisson regression2023

    • Author(s)
      Murakami Daisuke、Tsutsumida Narumasa、Yoshida Takahiro、Nakaya Tomoki、Lu Binbin、Harris Paul
    • Journal Title

      International Journal of Geographical Information Science

      Volume: 37 Issue: 8 Pages: 1818-1839

    • DOI

      10.1080/13658816.2023.2209811

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Spatial Regression in the Presence of a Hierarchical Transportation Network: Application to Land Price Analysis2022

    • Author(s)
      Murakami Daisuke、Seya Hajime
    • Journal Title

      Frontiers in Sustainable Cities

      Volume: 4 Pages: 905-967

    • DOI

      10.3389/frsc.2022.905967

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Spatial Prediction of Apartment Rent using Regression-Based and Machine Learning-Based Approaches with a Large Dataset2022

    • Author(s)
      Yoshida Takahiro、Murakami Daisuke、Seya Hajime
    • Journal Title

      The Journal of Real Estate Finance and Economics

      Volume: 1 Issue: 1 Pages: 1-28

    • DOI

      10.1007/s11146-022-09929-6

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A Route Map for Successful Applications of Geographically Weighted Regression2022

    • Author(s)
      Comber Alexis、Brunsdon Christopher、Charlton Martin、Dong Guanpeng、Harris Richard、Lu Binbin、Lu Yihe、Murakami Daisuke、Nakaya Tomoki、Wang Yunqiang、Harris Paul
    • Journal Title

      Geographical Analysis

      Volume: 55 Issue: 1 Pages: 155-178

    • DOI

      10.1111/gean.12316

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Improved log-Gaussian approximation for over-dispersed Poisson regression: Application to spatial analysis of COVID-192022

    • Author(s)
      Murakami Daisuke、Matsui Tomoko
    • Journal Title

      PLOS ONE

      Volume: 17 Issue: 1 Pages: 1-20

    • DOI

      10.1371/journal.pone.0260836

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Balancing spatial and non-spatial variation in varying coefficient modeling: a remedy for spurious correlation2021

    • Author(s)
      Murakami, D., Griffith, D.A.
    • Journal Title

      Geographical Analysis

      Volume: NA Issue: 1 Pages: 31-55

    • DOI

      10.1111/gean.12310

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Compositionally-warped additive mixed modeling for a wide variety of non-Gaussian spatial data2021

    • Author(s)
      Murakami Daisuke、Kajita Mami、Kajita Seiji、Matsui Tomoko
    • Journal Title

      Spatial Statistics

      Volume: 43 Pages: 100520-100520

    • DOI

      10.1016/j.spasta.2021.100520

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Scalable model selection for spatial additive mixed modeling: application to crime analysis2020

    • Author(s)
      D. Murakami, M. Kajita, S. Kajita
    • Journal Title

      ISPRS International Journal of Geo-Information

      Volume: 9 Issue: 10 Pages: 557-557

    • DOI

      10.3390/ijgi9100577

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Sub-model aggregationによる地理的加重回帰の安定化・高速化2023

    • Author(s)
      村上大輔, 堤田成政, 吉田崇紘, 中谷友樹
    • Organizer
      地理情報システム学会第32回研究発表大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Sub-model aggregation for scalable Spatial spatially varying coefficient modeling2023

    • Author(s)
      Murakami, D., Sugasawa, S.
    • Organizer
      EcoSta
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Sub-model aggregationによる空間可変パラメータモデルの高速化2023

    • Author(s)
      村上大輔・菅澤翔之助
    • Organizer
      2023年度統計関連学会連合大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Sub-model Aggregation for Scalable Spatial Mixed Modeling2023

    • Author(s)
      Murakami Daisuke, Sugasawa Sugasawa
    • Organizer
      ISM Symposium on Environmental Statistics
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] マルチスケールな時空間データを活用したCOVID-19の統計モデリング2023

    • Author(s)
      村上大輔
    • Organizer
      公開シンポジウム「COVID-19とデータ科学」
    • Related Report
      2022 Research-status Report
  • [Presentation] Large-scale spatial prediction by scalable geographically weighted regression: Comparative study2022

    • Author(s)
      Murakami, Daisuke, Tsutsumida Narumasa, Yoshida Takahiro, Nakaya Tomoki
    • Organizer
      The 15th International Conference on Spatial Information Theory
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] 転移学習による空間予測の高精度化・犯罪データへの応用2022

    • Author(s)
      村上大輔、梶田真実
    • Organizer
      地理情報システム学会
    • Related Report
      2022 Research-status Report
  • [Presentation] 統計モデルで探るCOVID-19の地理的要因分析2022

    • Author(s)
      村上大輔
    • Organizer
      立川商工会議所 第12回環境シンポジウム
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Compositionally-warped additive mixed modeling for large non- Gaussian data: Application to COVID-19 analysis2021

    • Author(s)
      Murakami Daisuke、Matsui Tomoko
    • Organizer
      The XV World Conference of Spatial Econometrics Association
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Stable geographically weighted Poisson regression for count data2021

    • Author(s)
      Murakami Daisuke, Tsutsumida Narumasa, Yoshida Takahiro, Nakaya Tomoki
    • Organizer
      GIScience2021
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 疎なカウントデータのための地理的加重ポアソン回帰の安定化・高速化2021

    • Author(s)
      村上大輔, 堤田成政, 吉田崇紘, 中谷友樹
    • Organizer
      地理情報システム学会第30回研究発表大会
    • Related Report
      2021 Research-status Report
  • [Presentation] COVID-19流行の地理的要因の解明に向けた ポアソン回帰の高度化2021

    • Author(s)
      村上大輔
    • Organizer
      都市経済学研究会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] COVID19の地理的要因の解明に向けた時空間加法モデリング2021

    • Author(s)
      村上大輔
    • Organizer
      2020年度データ同化ワークショップ
    • Related Report
      2020 Research-status Report
  • [Presentation] COVID-19流行の地理的要因の解明に向けた統計モデリング2021

    • Author(s)
      村上大輔
    • Organizer
      情報・システム研究機構シンポジウム2020
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] COVID-19流行の地理的要因の解明に向けた統計解析2021

    • Author(s)
      村上大輔
    • Organizer
      位置情報ビジネスカンファレンス2021
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Compositionally-warped additive mixed modeling for large non- Gaussian data: Application to COVID-19 analysis2020

    • Author(s)
      Murakami, D.
    • Organizer
      科研費シンポジウム "Recent Progress in Spatial and/or Spatio-temporal Data Analysis"
    • Related Report
      2020 Research-status Report
  • [Presentation] Compositionally-warped additive mixed modeling: application to COVID19 data in Japan2020

    • Author(s)
      Murakami, D.
    • Organizer
      ISM-Bristol Joint Seminor
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Spatial analysis of COVID18 spread using compositionally-warped Gaussian process2020

    • Author(s)
      Murakami, D.
    • Organizer
      Global Collaboration on Data beyond Disciplines
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Compositionally-warped additive modelingによるCOVID19の地理的要因分析2020

    • Author(s)
      村上大輔
    • Organizer
      2020年度日本保険・年金金リスク学会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Book] 実践Data Scienceシリーズ Rではじめる地理空間データの統計解析入門2022

    • Author(s)
      村上 大輔
    • Total Pages
      272
    • Publisher
      講談社
    • ISBN
      9784065273036
    • Related Report
      2022 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi