• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of Next-Generation Machine Intelligence for Predicting Material Properties, Considering the Influence of Experimental Processes and Sample Structures

Research Project

Project/Area Number 20K22466
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0401:Materials engineering, chemical engineering, and related fields
Research InstitutionKyoto University

Principal Investigator

Kumagai Masaya  京都大学, 複合原子力科学研究所, 特定助教 (00881054)

Project Period (FY) 2020-09-11 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsマテリアルズ・インフォマティクス / プロセス・インフォマティクス / 機械学習 / 材料工学 / マテリアルズインフォマティクス / 熱電変換材料
Outline of Research at the Start

本研究では、論文から抽出した実験的要素(実験プロセスや試料構造)を実験的物性値に紐付けた新しい大規模データを作成し、実験的要素に基づいた高精度な物性値予測ができる次世代Materials Informatics(MI)を開発する。実験値物性値には、本研究者らがこれまでに構築した世界最大規模の実験的物性値データベースを使用する。また解釈性の高い機械学習手法を使用することにより、実験的要素と物性値との関係性を明らかにする。

Outline of Final Research Achievements

In this study, we analyzed the relationships among process, structure, and physical properties and created our own large dataset. The process information in this study was collected by extracting text from PDFs of research papers. To analyze the relationship between structural information and physical properties, a machine learning model was constructed using X-ray diffraction patterns as input and crystal systems, volume, density, and volume modulus as learning targets. The original large dataset created during this research period has been publicly released on Figshare. The findings of this research were also disseminated externally through various means, including submissions to domestic and international conferences and journals.

Academic Significance and Societal Importance of the Research Achievements

プロセス情報を含めた物性の予測を可能にすることは、新規材料の発見のみならず、製造プロセスの改善に貢献することができるため大きな意義がある。また、XRDと物性との関係性を大規模なデータを利用して明らかにできたことは、これまで結晶構造と物性の関係性を紐解く上で学術的に意義がある。さらに、本研究期間に作成した大規模実験データは、これからの実験MIを推進する基盤データとなると考えている。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (10 results)

All 2022 2021

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (9 results) (of which Int'l Joint Research: 5 results,  Invited: 1 results)

  • [Journal Article] Effects of data bias on machine-learning?based material discovery using experimental property data2022

    • Author(s)
      Kumagai Masaya、Ando Yuki、Tanaka Atsumi、Tsuda Koji、Katsura Yukari、Kurosaki Ken
    • Journal Title

      Science and Technology of Advanced Materials: Methods

      Volume: 2 Issue: 1 Pages: 302-309

    • DOI

      10.1080/27660400.2022.2109447

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Direct prediction of mechanical properties from X-ray diffraction patterns using machine learning2022

    • Author(s)
      Naoki Hato, Masaya Kumagai, Ken Kurosaki
    • Organizer
      TMS 2022 Annual Meeting & Exhibition
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Applicability domain for prediction models of thermoelectric properties based on similarity to known materials2022

    • Author(s)
      Masaya Kumagai, Yukari Katsura, Yuki Ando, Atsumi Tanaka, Koji Tsuda, Ken Kurosaki
    • Organizer
      TMS 2022 Annual Meeting & Exhibition
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 3次元メッシュで表現した結晶構造を用いた材料物性の予測に向けた深層学習モデルの設計2022

    • Author(s)
      鶴田博文, 桂ゆかり, 熊谷将也
    • Organizer
      2022年度 人工知能学会全国大会(第36回)
    • Related Report
      2022 Annual Research Report
  • [Presentation] Applicability domain for prediction models of thermoelectric properties based on similarity to known materials2022

    • Author(s)
      Masaya Kumagai
    • Organizer
      TMS2022
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Direct prediction of mechanical properties from X-ray diffraction patterns using machine learning2022

    • Author(s)
      Naoki Hato
    • Organizer
      TMS2022
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] マテリアルズ・インフォマティクス― 大規模な実験データ収集Webシステムの開発と応用 ―2022

    • Author(s)
      熊谷 将也
    • Organizer
      複合原子力化学研究所第56回学術講演会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 既知材料との類似性に基づいた熱電特性予測モデルの適用範囲2021

    • Author(s)
      熊谷 将也
    • Organizer
      日本熱電学会
    • Related Report
      2021 Research-status Report
  • [Presentation] 機械的特性予測のためのX線回折パターンに基づく特徴量の設計2021

    • Author(s)
      波頭 直輝
    • Organizer
      日本金属学会
    • Related Report
      2021 Research-status Report
  • [Presentation] Design of Features Based on X-ray Diffraction Patterns for Prediction of Mechanical Properties2021

    • Author(s)
      Naoki Hato
    • Organizer
      MRS2021
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2020-09-29   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi