• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Combinatorial Approach to Algebraic Extension of Matching Problems

Research Project

Project/Area Number 20K23323
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 1001:Information science, computer engineering, and related fields
Research InstitutionKyoto University

Principal Investigator

Iwamasa Yuni  京都大学, 情報学研究科, 助教 (70854602)

Project Period (FY) 2020-09-11 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsマッチング問題 / マトロイド / 代数的組合せ最適化 / 多項式時間可解性 / Edmonds問題 / 重み付きEdmonds問題 / 非可換Edmonds問題 / 重み付き非可換Edmonds問題 / 線形マトロイド交叉 / 最大最小定理 / 組合せ最適化 / 代数的最適化 / マッチング理論 / アルゴリズム
Outline of Research at the Start

組合せ最適化において重要な問題である最大マッチング問題やその多項式時間可解な拡張問題の多くは,「変数を含んだ行列のランクを求める」という代数的な問題として定式化できる.マッチング問題に対する包括的な理解やランダムネスが計算効率に与える影響の本質的な理解につながるため,この"代数的マッチング問題"の諸性質の解明は,組合せ最適化分野や理論計算機科学分野において重要な研究テーマとして位置づけられている.本研究では,組合せ的なアプローチを用いて,代数的マッチング問題の諸性質の解明を目指す.

Outline of Final Research Achievements

In this research project, we study (Weighted) Edmonds problem --- a problem of computing the rank of a matrix having symbols --- and its noncommutative variant. We devise an efficient and combinatorial algorithm for the case where the given matrix can be partitioned into 2x2 matrices. Based on this result, we also develop a strongly polynomial-time algorithm for computing the sequence of the maximum degree of Dieudonne minors of linear symbolic monomial matrices in the noncommutative setting.

Academic Significance and Societal Importance of the Research Achievements

近年盛んに研究が行われている「代数的組合せ最適化」とよばれる分野において,組合せ的なアプローチで簡潔かつ高速なアルゴリズムの構築や「良い特徴づけ」となりうる新たな最大最小定理の導出を行ったことで,問題の数理構造そのものへの理解を深めることができた.これにより組合せ最適化分野のさらなる発展が期待できる.

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (17 results)

All 2023 2022 2021 Other

All Journal Article (7 results) (of which Peer Reviewed: 6 results,  Open Access: 2 results) Presentation (6 results) (of which Int'l Joint Research: 3 results,  Invited: 3 results) Remarks (4 results)

  • [Journal Article] Reconfiguring (non-spanning) arborescences2023

    • Author(s)
      Takehiro Ito, Yuni Iwamasa, Yasuaki Kobayashi, Yu Nakahata, Yota Otachi, Kunihiro Wasa
    • Journal Title

      Theoretical Computer Science

      Volume: 943 Pages: 131-141

    • DOI

      10.1016/j.tcs.2022.12.007

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Monotone edge flips to an orientation of maximum edge-connectivity a la Nash-Williams2023

    • Author(s)
      Takehiro Ito, Yuni Iwamasa, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, Shun-ichi Maezawa, Yuta Nozaki, Yoshio Okamoto, Kenta Ozeki
    • Journal Title

      ACM Transactions on Algorithms

      Volume: 19 Issue: 1 Pages: 6-6

    • DOI

      10.1145/3561302

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A combinatorial algorithm for computing the entire sequence of the maximum degree of minors of a generic partitioned polynomial matrix with 2×2 submatrices2023

    • Author(s)
      Yuni Iwamasa
    • Journal Title

      Mathematical Programming, Series A

      Volume: -

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Reconstructing phylogenetic trees from multipartite quartet systems2022

    • Author(s)
      Hirai Hiroshi and Iwamasa Yuni
    • Journal Title

      Algorithmica

      Volume: - Issue: 7 Pages: 1875-1896

    • DOI

      10.1007/s00453-022-00945-9

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] A combinatorial algorithm for computing the rank of a generic partitioned matrix with $$2 \times 2$$ submatrices2021

    • Author(s)
      Hirai Hiroshi and Iwamasa Yuni
    • Journal Title

      Mathematical Programming

      Volume: - Issue: 1-2 Pages: 1-37

    • DOI

      10.1007/s10107-021-01676-5

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Optimal matroid bases with intersection constraints: Valuated matroids, M-convex functions, and their applications2021

    • Author(s)
      Yuni Iwamasa, Kenjiro Takazawa
    • Journal Title

      Mathematical Programming

      Volume: - Issue: 1-2 Pages: 229-256

    • DOI

      10.1007/s10107-021-01625-2

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] A combinatorial algorithm for computing the degree of the determinant of a generic partitioned polynomial matrix with $2 \times 2$ submatrices2021

    • Author(s)
      Yuni Iwamasa
    • Journal Title

      Proceedings of the 22nd Conference on Integer Programming and Combinatorial Optimization (IPCO 2021)

      Volume: -

    • Related Report
      2020 Research-status Report
  • [Presentation] A combinatorial algorithm for computing the entire sequence of the maximum degree of minors of a generic partitioned polynomial matrix with 2x2 submatrices2023

    • Author(s)
      Yuni Iwamasa
    • Organizer
      SIAM Conference on Optimization (OP23)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A combinatorial algorithm for computing the entire sequence of the maximum degree of minors of a generic partitioned polynomial matrix with 2×2 submatrices2023

    • Author(s)
      Yuni Iwamasa
    • Organizer
      The 12th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications (JH 2023)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] $2 \times 2$型分割多項式行列の行列式次数を求める組合せ的多項式時間アルゴリズム2021

    • Author(s)
      岩政 勇仁
    • Organizer
      日本応用数理学会 2021年度年会
    • Related Report
      2021 Research-status Report
  • [Presentation] 2部マッチング問題の代数的拡張2021

    • Author(s)
      岩政 勇仁
    • Organizer
      日本オペレーションズ・リサーチ学会 研究部会「最適化手法とアルゴリズム」
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Optimal matroid bases with intersection constraints: Valuated matroids, M-convex functions, and their applications2021

    • Author(s)
      Yuni Iwamasa
    • Organizer
      The 16th Annual Conference on Theory and Applications of Models of Computation (TAMC 2020)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] 2部マッチング理論の代数的一般化について2021

    • Author(s)
      岩政 勇仁
    • Organizer
      第32回RAMP数理最適化シンポジウム (RAMP 2020)
    • Related Report
      2020 Research-status Report
    • Invited
  • [Remarks] 研究成果

    • URL

      https://www.lab2.kuis.kyoto-u.ac.jp/iwamasa/ja/research.html

    • Related Report
      2023 Annual Research Report
  • [Remarks] 研究成果

    • URL

      http://www.lab2.kuis.kyoto-u.ac.jp/iwamasa/ja/research.html

    • Related Report
      2022 Research-status Report
  • [Remarks] 論文

    • URL

      http://www.lab2.kuis.kyoto-u.ac.jp/iwamasa/ja/publications.html

    • Related Report
      2021 Research-status Report
  • [Remarks] 発表

    • URL

      http://www.lab2.kuis.kyoto-u.ac.jp/iwamasa/ja/talks.html

    • Related Report
      2021 Research-status Report

URL: 

Published: 2020-09-29   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi