Project/Area Number |
21244002
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Kyoto University (2012-2013) Hokkaido University (2009-2011) |
Principal Investigator |
ONO Kaoru 京都大学, 数理解析研究所, 教授 (20204232)
|
Co-Investigator(Kenkyū-buntansha) |
IZUMIYA Shyuichi 北海道大学, 大学院・理学研究院, 教授 (80127422)
JINZENJI Masao 北海道大学, 大学院・理学研究院, 准教授 (20322795)
MATSUSHITA Daisuke (MASUDA Mikiya) 北海道大学, 大学院・理学研究院, 准教授 (20204232)
ISHIKAWA Goo 北海道大学, 大学院・理学研究院, 教授 (50176161)
YAMAGUCHI Keizo 北海道大学, 大学院・理学研究院, 教授 (00113639)
TAKAKURA Tatsuru 中央大学, 理工学部, 准教授 (30268974)
枡田 幹也 大阪市立大学, 理学(系)研究科(研究院), 教授 (00143371)
松下 大介 北海道大学, 理学(系)研究科(研究院), 准教授 (90333591)
|
Project Period (FY) |
2009-04-01 – 2014-03-31
|
Project Status |
Completed (Fiscal Year 2013)
|
Budget Amount *help |
¥41,340,000 (Direct Cost: ¥31,800,000、Indirect Cost: ¥9,540,000)
Fiscal Year 2013: ¥8,060,000 (Direct Cost: ¥6,200,000、Indirect Cost: ¥1,860,000)
Fiscal Year 2012: ¥7,670,000 (Direct Cost: ¥5,900,000、Indirect Cost: ¥1,770,000)
Fiscal Year 2011: ¥8,190,000 (Direct Cost: ¥6,300,000、Indirect Cost: ¥1,890,000)
Fiscal Year 2010: ¥8,060,000 (Direct Cost: ¥6,200,000、Indirect Cost: ¥1,860,000)
Fiscal Year 2009: ¥9,360,000 (Direct Cost: ¥7,200,000、Indirect Cost: ¥2,160,000)
|
Keywords | symplectic 構造 / Floer 理論 / 正則曲線 / Lagrange 部分多様体 / A-無限大構造 / トーリック多様体 / シンプレクティック構造 / 擬正則写像 / 幾何学 / 変形理論 / toric 多様体 / Floer理論 / symplectic構造 / Lagrange部分多様体 / toric多様体 / A-infinity構造 / Hamilton系 / 擬正則曲線 / 接触構造 |
Research Abstract |
Symplectic structure is a geometric structure, which appeared in the understanding of Hamilton's equation of motion. In recent years, there has been profound development in the geometric study of symplectic structures. In particular, combined with the mathematical study on mirror symmetry, symplectic geometry attracts attentions from many researchers. The investigator has been working on Floer theory, which plays a significant role in symplectic geometry, and its applications. In this research project, we studied Floer theory for Lagrangian torus fibers in toric manifold in a concrete way and obtained various interesting results.
|