Project/Area Number |
21560365
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Electron device/Electronic equipment
|
Research Institution | Tokyo University of Science |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
TAGUCHI Hirohisa 中京大学, 情報理工学部, 准教授 (30453830)
|
Project Period (FY) |
2009 – 2011
|
Project Status |
Completed (Fiscal Year 2011)
|
Budget Amount *help |
¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Fiscal Year 2011: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2010: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2009: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
|
Keywords | 電子デバイス / 集積回路 / 光検出デバイス / III-V化合物半導体 / 超高速応答 / Auger再結合 |
Research Abstract |
We have fabricated HEMT's with a strained InGaAs, whose mole fraction is close to that of InAs, as the channel have been fabricated and characterized high-frequency performances using a network analyser. HEMT's with the gate length of 0.1μm exhibited a current cut-off frequency(fT) research ranging over 200 GHz. We have also fabricated MSM-PD's with a strained InGaAs channel and characterized the optical response using a fiber laser with a bandwidth of 400 femt-seconds. MSM-PD's with a L & S of 0.2/0.6μm exhibited a pulse width less than 20 psec. This is because the strained InGaAs has a relatively high drift velocity of electrons. In addition, these MSM-PD's exhibited a responsivity more than one regardless of the channel width as thin as 10 nm. In this way, ultra-high speed OEIC's can be realized by simultaneously fabricating MSM-PD's and HEMT's on the same epitaxial wafer. Therefore, an application of these MSM-PD's to high-speed OEIC's for use in broad-band optical communication systems is expected.
|