Reservoir computing with MEMS resonators
Project/Area Number |
21F20799
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 外国 |
Review Section |
Basic Section 20010:Mechanics and mechatronics-related
|
Research Institution | Kyoto University |
Principal Investigator |
土屋 智由 京都大学, 工学研究科, 教授 (60378792)
|
Co-Investigator(Kenkyū-buntansha) |
MEFFAN ROBERT CLAUDE 京都大学, 工学(系)研究科(研究院), 外国人特別研究員
|
Project Period (FY) |
2021-04-28 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 2022: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2021: ¥1,200,000 (Direct Cost: ¥1,200,000)
|
Keywords | Reservoir Computing / Surface Acoustic Wave / Phase modulation / Noise resiliency / Neuromorphic computing / noise resiliency / neuromorphic computing |
Outline of Research at the Start |
本研究ではMEMS共振器を用いた物理リザバーコンピューティングの可能性について検討します。リザバーコンピュータ(RC)はニューラルネットワークの一種で非線形あり、ランダムなリザバーネットワークを構成することで時間データなどの解析応用においてネットワーク構成のための計算コストを低減します。MEMS技術を用いたリザバーは実用的で、かつ、センサと一体化可能であり有用です。ここでは単結晶シリコンのマイクロ、ナノ機械の非線形共振器をリザバーとして用いることを目指して,単一の共振器の非線形性について解析し、その非線形領域を利用したリザバーの構築技法についての検討を行います。
|
Outline of Annual Research Achievements |
The goal of this work is to examine if the time-multiplexed reservoir computing strategy can enable non-linear processing for SAW devices. If this is shown to be possible, it would allow high performance real-time learning to be performed on a substrate 10^5 times smaller than competing optical implementations. This would allow high performance implementations of reservoir computer to be added to lightweight and portable devices. To evaluate the research proposal, custom Surface Acoustic Wave resonators are to be fabricated, and new experimental apparatus designed and implemented. A range of SAW resonators, and other SAW devices are designed, and intended to be tested. The fabrication is possible through use Kyoto University and the Nano-hub’s equipment. Following successful fabrication of the SAW devices, the reservoir computing system can be tested by designing and building supporting apparatus. The resulting reservoir computer can then be compared to other implementations through the application of well-established reservoir computing benchmark tasks, which will allow direct comparison of one technology to another. In this case, we select the binary parity task. A SAW resonator reservoir computer has been successfully implemented, using electronic memory in place of a SAW delay line. This is the first demonstration of a reservoir computer using a SAW devices, and can pave the way to a fully integrated delay line reservoir computer at a physical size which is practical for use in portable electronics.
|
Research Progress Status |
令和4年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和4年度が最終年度であるため、記入しない。
|
Report
(2 results)
Research Products
(3 results)