Project/Area Number |
21H01522
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 24010:Aerospace engineering-related
|
Research Institution | Hokkaido University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
河合 宗司 東北大学, 工学研究科, 教授 (40608816)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥16,770,000 (Direct Cost: ¥12,900,000、Indirect Cost: ¥3,870,000)
Fiscal Year 2023: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2022: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Fiscal Year 2021: ¥5,850,000 (Direct Cost: ¥4,500,000、Indirect Cost: ¥1,350,000)
|
Keywords | 超臨界流体 / 燃焼 / 非理想性 / 火炎モデル / ラージエディシミュレーション / LES火炎モデル / 詳細反応 / 超臨界圧燃焼 / LES解析 / 詳細反応機構 / 乱流燃焼モデル |
Outline of Research at the Start |
本研究は,航空宇宙推進器等で見られる超臨界圧環境下燃焼流れ場の高度予測を可能とする燃焼流体シミュレーション(燃焼CFD)技術の開発とその適用を目的とする.目指す開発技術の中心を,化学反応の理解に基づく燃焼制御及び予測技術と据え,それを可能とする詳細反応機構を適用した燃焼CFD技術を開発する.具体的には,本グループが持つ独自の視点に基づき,詳細反応機構を適用可能な化学反応項LESモデル及び燃焼LES壁モデルの開発に挑戦する.ロケット燃焼で課題として残される燃焼振動及び壁熱流束予測問題へ適用することで,開発した燃焼CFD技術の有効性を実証する.
|
Outline of Final Research Achievements |
A novel numerical modeling for combustion flows under supercritical pressure conditions has been introduced, which uniquely incorporates real-fluid effects regarding chemical kinetics. The proposed modeling was sufficiently validated through comparison with experimental data. Additionally, the study has successfully developed a novel flame model, named LTF-S, for efficient combustion simulations under high pressures. The LTF-S model accurately predicts flame speeds under stretching effects, even with very coarse grid resolutions compared to direct numerical simulations.
|
Academic Significance and Societal Importance of the Research Achievements |
既存の研究で無視されてきた化学反応に対する非理想性を考慮した超臨界圧燃焼流体シミュレーション技術を確立した.既存の研究とは異なり,化学反応の平衡定数を通して非理想性が考慮されるようモデル化を行ったものである.熱物性,輸送物性,そして化学反応と一貫して非理想性が考慮できる世界でも稀有な解析技術である.また,新しい火炎モデルの開発では,物理現象を満たすように空間フィルター余剰項を構築するという独自の方法論を用いてその開発に成功した.モデルを利用しない直接数値解析に対して数百倍から数千倍という大幅な計算負荷の低減が可能であり,燃焼技術開発におけるシミュレーション適用に大きなインパクトを与える.
|