• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of Theory of Integrable Systems Describing Geometric Shapes

Research Project

Project/Area Number 21K03329
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionKyushu University

Principal Investigator

Kajiwara Kenji  九州大学, マス・フォア・インダストリ研究所, 教授 (40268115)

Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords幾何学的形状生成 / 微分幾何 / 離散微分幾何 / 可積分系の理論 / 建築設計 / 工業意匠設計 / 可積分系 / クライン幾何 / 離散正則関数 / 弾性曲線 / 対数型美的曲線 / 離散正則函数
Outline of Research at the Start

本研究では曲面・曲線論を動機に可積分系の理論の新方向を開拓し,クライン幾何の枠組みで可積分系の記述する,よい性質をもった曲面・曲線の理論を構築する.応用分野に動機を得て,構築した理論を用いて「美しい」「望ましい」形状を定式化し,可積分離散化を活用して高品質な形状要素のロバストな生成法を構築する.対数型美的曲線やその一般化の理論など,日本独自の形状の幾何学と可積分系の理論を融合し独創的な成果を目指す.

Outline of Final Research Achievements

Log-aesthetic curves(LAC) are considered in similarity geometry, characterized as shape-invariant curves with respect to integrable deformations of plane curves and formulated by the variational principle, and their integrable discretization and space curve and surface versions are proposed. The integrable structure is investigated in detail. From the viewpoint of the self-affinity of plane curves, we identified quadratic curves as another family of aesthetic curves, and suggested equi-affine geometry and projective geometry as theoretical frameworks. We also constructed a method for generating Michell-Prager type truss structures of architecture by discrete holomorphic functions. We constructed an algorithm for approximating a given (discrete) plane curve by a LAC. We constructed explicit formulas for shape-invariant curves in Euclidean geometry for integrable deformations of spatial (discrete) curves using the theta functions.

Translated with www.DeepL.com/Translator (free version)

Academic Significance and Societal Importance of the Research Achievements

工業意匠設計や建築に動機を得て,クライン幾何における曲線論,曲面論を活用した幾何学的形状生成と,そこに現れる可積分構造を詳細に調べることで,(離散)微分幾何,可積分系の理論に対する新しい発展の方向性を与えた.同時に,工業意匠設計分野や建築分野に対して数学を活用した新しい形状設計手法をもたらした.このように,産業や社会に関わる問題をドライビングフォースとして,数学の新研究領域を開拓し,元の分野と数学双方を活性化する「マス・フォア・インダストリ」の一つの典型的な例を提示できたことに意義がある.

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (48 results)

All 2024 2023 2022 2021 Other

All Int'l Joint Research (4 results) Journal Article (6 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results,  Open Access: 6 results) Presentation (38 results) (of which Int'l Joint Research: 12 results,  Invited: 9 results)

  • [Int'l Joint Research] University of New South Wales(オーストラリア)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] University of Leicester(英国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] ニューサウスウェールズ大学(オーストラリア)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] ニューサウスウェールズ大学(オーストラリア)

    • Related Report
      2021 Research-status Report
  • [Journal Article] Parametric generation of optimal structures through discrete exponential functions: unveiling connections between structural optimality and discrete isothermicity2024

    • Author(s)
      Hayashi Kazuki、Jikumaru Yoshiki、Yokosuka Yohei、Hayakawa Kentaro、Kajiwara Kenji
    • Journal Title

      Structural and Multidisciplinary Optimization

      Volume: 67 Issue: 3 Pages: 41-41

    • DOI

      10.1007/s00158-024-03767-1

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Log-aesthetic curves: Similarity geometry, integrable discretization and variational principles2023

    • Author(s)
      Inoguchi Jun-ichi、Jikumaru Yoshiki、Kajiwara Kenji、Miura Kenjiro T.、Schief Wolfgang K.
    • Journal Title

      Computer Aided Geometric Design

      Volume: 105 Pages: 102233-102233

    • DOI

      10.1016/j.cagd.2023.102233

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Fairing of planar curves to log-aesthetic curves2023

    • Author(s)
      Graiff Zurita Sebastian Elias、Kajiwara Kenji、Miura Kenjiro T.
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics

      Volume: - Issue: 2 Pages: 1203-1219

    • DOI

      10.1007/s13160-023-00567-w

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Fairing of discrete planar curves to integrable discrete analogue of Euler’s elasticae2022

    • Author(s)
      Zurita Sebastian Elias Graiff、Kajiwara Kenji、Suzuki Toshitomo
    • Journal Title

      International Journal of Mathematics for Industry

      Volume: 14 Issue: 01 Pages: 22550007-22550007

    • DOI

      10.1142/s2661335222500071

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Sine-Gordon 方程式の解法とその離散化2022

    • Author(s)
      宇田川誠一,井ノ口順一,梶原健司
    • Journal Title

      日本大学医学部 一般教育研究紀要

      Volume: 50 Pages: 7-24

    • Related Report
      2022 Research-status Report
    • Open Access
  • [Journal Article] Explicit formulas for isoperimetric deformations of smooth and discrete elasticae2021

    • Author(s)
      Shigetomi Shota、Kajiwara Kenji
    • Journal Title

      JSIAM Letters

      Volume: 13 Issue: 0 Pages: 80-83

    • DOI

      10.14495/jsiaml.13.80

    • NAID

      130008130446

    • ISSN
      1883-0609, 1883-0617
    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] A Truss Structure with Mechanical Optimality, Integrability and Artisticity2024

    • Author(s)
      Kenji Kajiwara, Yoshiki Jikumaru, Kazuki Hayashi, Kentaro Hayakawa and Youhei Yokosuka
    • Organizer
      ANZIAM Conference 2024
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 平面上の対数型美的曲線の空間中での可積分変形が生成する曲面2024

    • Author(s)
      梶原健司,軸丸芳揮,Wolfgang K. Schief
    • Organizer
      日本応用数理学会第20回研究部会連合発表会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 曲線の自己アフィン性と対数型美的曲線について2024

    • Author(s)
      熊谷駿,梶原健司
    • Organizer
      日本応用数理学会第20回研究部会連合発表会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 構造設計に動機づけられた可積分離散正則函数における変分原理の構築2024

    • Author(s)
      軸丸芳揮, 横須賀 洋平, 林 和希, 早川 健太郎, 梶原 健司
    • Organizer
      日本応用数理学会第20回研究部会連合発表会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 対数型美的曲線の空間曲線アナロジー:ヤコビの楕円函数を用いた明示公式2024

    • Author(s)
      軸丸芳揮, 梶原 健司, Wolfgang K. Schief
    • Organizer
      日本応用数理学会第20回研究部会連合発表会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 可積分幾何による美的形状の生成2024

    • Author(s)
      梶原健司
    • Organizer
      日本数学会2024年度年会
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Truss Structure with Mechanical Optimality, Integrability and Artisticity2023

    • Author(s)
      Kenji Kajiwara, Yoshiki Jikumaru, Kazuki Hayashi, Kentaro Hayakawa and Youhei Yokosuka
    • Organizer
      Symmetries and Integrability of Difference Equations (SIDE14.2)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Generation of Aesthetic Curves and Surfaces by Integrable Geometry2023

    • Author(s)
      Kenji Kajiwara, Yoshiki Jikumaru and Wolfgang K. Schief
    • Organizer
      ECMI Conference 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Generation of Aesthetic Shape by Integrable Geometry2023

    • Author(s)
      Kenji Kajiwara, Yoshiki Jikumaru and Wolfgang K. Schief
    • Organizer
      10th International Congress of Industrial and Applied Mathematics (ICIAM2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Generation of Aesthetic Shape by Integrable Geometry2023

    • Author(s)
      Kenji Kajiwara, Yoshiki Jikumaru and Wolfgang K. Schief
    • Organizer
      Workshop on Mathematics for Industry
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Generation of Aesthetic Curves and Surfaces by Integrable Geometry2023

    • Author(s)
      Kenji Kajiwara
    • Organizer
      SIAM Conference on Computer Science and Engineering
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 相似幾何における擬球型曲面の枠の対称性による積分公式2023

    • Author(s)
      軸丸芳揮,梶原健司,Wolfgang K. Schief
    • Organizer
      日本応用数理学会研究部会連合発表会
    • Related Report
      2022 Research-status Report
  • [Presentation] 可積分幾何に基づくトラス構造の生成と力学的特性について2023

    • Author(s)
      軸丸芳揮,林和希,早川健太郎,横須賀洋平,梶原健司
    • Organizer
      日本応用数理学会研究部会連合発表会
    • Related Report
      2022 Research-status Report
  • [Presentation] Generation of Aesthetic Curves and Surfaces by Integrable Geometry2023

    • Author(s)
      Kenji Kajiwara
    • Organizer
      3rd Shot of MSJ-SI“Differential Geometry and Integrable Systems”
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 早川健太郎,林和希,軸丸芳揮,梶原健司,横須賀洋平2023

    • Author(s)
      可積分幾何に基づく Michell トラス型構造と離散対数型美的曲線
    • Organizer
      日本数学会 2023 年度年会
    • Related Report
      2022 Research-status Report
  • [Presentation] 可積分系による形状生成:弾性曲線・対数型美的曲線から「美的曲面」へ2022

    • Author(s)
      梶原健司
    • Organizer
      RIMS 共同研究(公開型)「可積分系数理の発展と応用」
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Geometric Generation of Aesthetic Shapes by Integrable Systems2022

    • Author(s)
      Kenji Kajiwara
    • Organizer
      ICIAM Workshop on Industrial and Applied Mathematics
    • Related Report
      2022 Research-status Report
  • [Presentation] 離散正則函数を用いた Michell トラス型構造について2022

    • Author(s)
      早川健太郎,林和希,軸丸芳揮,梶原健司,横須賀洋平
    • Organizer
      日本応用数理学会 2022 年度年会
    • Related Report
      2022 Research-status Report
  • [Presentation] 相似幾何における相似捩率一定空間曲線の可積分変形の生成する曲面2022

    • Author(s)
      井ノ口順一,軸丸芳揮,梶原健司,Wolfgang K. Schief
    • Organizer
      日本応用数理学会 2022 年度年会
    • Related Report
      2022 Research-status Report
  • [Presentation] カライドサイクルの明示公式2022

    • Author(s)
      重富尚太,梶原健司
    • Organizer
      日本応用数理学会 2022 年度年会
    • Related Report
      2022 Research-status Report
  • [Presentation] カライドサイクルの明示公式2022

    • Author(s)
      重富尚太,梶原健司
    • Organizer
      日本数学会 2022 年度秋季総合分科会
    • Related Report
      2022 Research-status Report
  • [Presentation] An explicit formula for isoperimetric deformation of discrete space curve with constant torsion angle2022

    • Author(s)
      Shota Shigetomi and Kenji Kajiwara
    • Organizer
      Australia New Zealand Industrial and Applied Mathematics Annual Conference 2022
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Torsion angle 一定の空間離散曲線の等周変形の楕円テータ函数による明示公式2022

    • Author(s)
      重富尚太,梶原健司
    • Organizer
      日本応用数理学会第18回研究部会連合発表会
    • Related Report
      2021 Research-status Report
  • [Presentation] 捩率角一定の空間離散曲線の等周変形の楕円テータ函数による明示公式2022

    • Author(s)
      重富尚太,梶原健司
    • Organizer
      日本数学会2022年度年会
    • Related Report
      2021 Research-status Report
  • [Presentation] Fairing of planar curves by Log-aesthetic curves2022

    • Author(s)
      Sebastian Elias Graiff Zurita
    • Organizer
      The 4th International Workshop Geometry of Submanifolds and Integrable Systems
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] An explicit formula for isoperimetric deformation of discrete space curve with constant torsion angle2022

    • Author(s)
      Shota Shigetomi and Kenji Kajiwara
    • Organizer
      The 4th International Workshop Geometry of Submanifolds and Integrable Systems
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 相似幾何によるS字型離散対数型美的曲線の生成法2022

    • Author(s)
      井ノ口 順一, 軸丸 芳揮,梶原 健司, 三浦 憲二郎, Schief Wolfgang
    • Organizer
      日本応用数理学会第18回研究部会連合発表会
    • Related Report
      2021 Research-status Report
  • [Presentation] Explicit Formulas of Arc-Length Preserving Motions of Smooth and Discrete Elasticae2021

    • Author(s)
      Shota Shigetomi and Kenji Kajiwara
    • Organizer
      European Consortium of Mathematics in Industry 2021 Conference
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 捩率一定空間曲線およびtorsion angle一定空間離散曲線に対する楕円テータ函数による明示公式2021

    • Author(s)
      重富尚太,梶原健司
    • Organizer
      日本応用数理学会2021年度年会
    • Related Report
      2021 Research-status Report
  • [Presentation] 捩率一定曲線および torsion angle 一定離散曲線の明示公式2021

    • Author(s)
      重富尚太,梶原健司
    • Organizer
      日本数学会2021年度秋季総合分科会
    • Related Report
      2021 Research-status Report
  • [Presentation] 楕円テータ函数を用いたカライドサイクルの明示公式の構成2021

    • Author(s)
      重富尚太, 鍛冶静雄, 梶原健司, 朴炯基
    • Organizer
      非線形波動と可積分系
    • Related Report
      2021 Research-status Report
  • [Presentation] Explicit formulas of isoperimetric deformations of smooth and discrete elasticae2021

    • Author(s)
      Shota Shigetomi and Kenji Kajiwara
    • Organizer
      Engineering Mathematics and Applications Conference 2021
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Fairing of discrete planar curves with integrable discretization of Euler’s elasticae2021

    • Author(s)
      Sebastian Elias Graiff Zurita, Kenji Kajiwara, Toshitomo Suzuki,
    • Organizer
      European Consortium of Mathematics in Industry 2021 Conference
    • Related Report
      2021 Research-status Report
  • [Presentation] 相似幾何学における空間曲線の時間発展に現れるsine-Gordon方程式2021

    • Author(s)
      軸丸芳揮, 梶原 健司, Schief Wolfgang
    • Organizer
      日本応用数理学会2021年度年会
    • Related Report
      2021 Research-status Report
  • [Presentation] Parametric identification of Log-aesthetic curves based on similarity transformations2021

    • Author(s)
      Sebastian Elias Graiff Zurita
    • Organizer
      日本応用数理学会2021年度年会
    • Related Report
      2021 Research-status Report
  • [Presentation] Reconstruction of Log-aesthetic curve parameters2021

    • Author(s)
      Sebastian Elias Graiff Zurita
    • Organizer
      Perspectives on Artificial Intelligence and Machine Learning in Material Science
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 相似幾何におけるsine-Gordon方程式と擬球型曲面対応2021

    • Author(s)
      軸丸芳揮,梶原健司,Wolfgang Schief
    • Organizer
      特異点論の未来
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Generation of Aesthetic Shapes by Integrable Systems2021

    • Author(s)
      Kenji Kajiwara, Yoshiki Jikumaru, Shizuo Kaji and Wolfgang Schief
    • Organizer
      Australia New Zealand Association of Mathematical Physics Seminar
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi