Project/Area Number |
21K11890
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 60070:Information security-related
|
Research Institution | Kyushu Institute of Technology |
Principal Investigator |
Araki Shunsuke 九州工業大学, 大学院情報工学研究院, 准教授 (20332851)
|
Co-Investigator(Kenkyū-buntansha) |
野上 保之 岡山大学, 自然科学学域, 教授 (60314655)
上原 聡 北九州市立大学, 国際環境工学部, 教授 (90213389)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 機械学習 / 深層学習 / AES / 共通鍵暗号 / 軽量暗号 / 擬似乱数生成 / 線形合同法 / ニューラルネットワーク / DES / Midori / 安全性評価 / 攻撃手法 |
Outline of Research at the Start |
本研究では、情報セキュリティ分野における基礎技術である擬似乱数生成器や、共通鍵暗号方式などの暗号技術に対して、近年注目を集める機械学習や深層学習が与える影響を評価する。一般的に、これらの暗号技術は、出力列において0/1のビットが等頻度で出現するなど、統計的に偏りが無く、ランダムに振る舞うように設計されている。その一方で、機械学習や深層学習は、ランダムな事象には向かないとされている。つまり、機械学習などにより何らかの偏りを見つけることは、暗号技術の安全性を評価することとなる。本研究は、新たな安全性の評価手法の確立につながる、重要な研究の一つである。
|
Outline of Final Research Achievements |
Focusing on features that machine learning and deep learning, which have attracted much attention for many research fields in recent years, are difficult to inference about random events, we thought these technologies are used for security evaluations for cryptography. As the firs step of our research, we studied attack methods using these techniques against cryptographic techniques such as common-key cryptography and pseudo-random number generators. In the attack on common-key cryptography, we confirmed that a key identification attack against input of only plaintext and ciphertext and a plaintext decryption attack against input of only ciphertext are possible using machine learning and deep learning, although with the restriction that the cryptographic specifications are modified to weaken the cryptographic strength. We also found that deep learning can predict the output at the next time for the linear congruence method, which was often used in a pseudorandom number generation.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、出力がランダムである事が期待される暗号技術に対して、ランダムな事象が苦手な機械学習や深層学習を攻撃手法として用いることで、これまで見つけることができなかった何かしらの「偏り」を見つけ出すことができた。 その結果、これら機械学習や深層学習が、暗号技術の安全性評価にも活用できることを明らかにした。
|