First-principles thermodynamics for optimal design of atomic structure and properties of grain boundaries in ceramic materials
Project/Area Number |
21K14405
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 26020:Inorganic materials and properties-related
|
Research Institution | Nagoya University |
Principal Investigator |
Yokoi Tatsuya 名古屋大学, 工学研究科, 講師 (70791581)
|
Project Period (FY) |
2021-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2022: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2021: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
|
Keywords | 粒界 / 第一原理計算 / 機械学習 / 熱力学 / 結晶粒界 / 原子間ポテンシャル / 自由エネルギー / セラミックス粒界 / 機械学習型原子間ポテンシャル / 圧縮センシング / 自由エネルギー計算 |
Outline of Research at the Start |
高温域におけるセラミックス粒界の熱力学的安定性に関する情報は、多結晶組織とその特性を制御する上で不可欠である。本研究では、第一原理計算と機械学習、情報科学的手法を統合して、高精度・高速で粒界の自由エネルギー計算が可能な「第一原理熱力学計算法」を確立する。この手法をセラミックス粒界に適用することで、全温度域を対象に、原子構造という根本から粒界構造と熱力学的安定性との関係を解明する。その知見をもとに「セラミックス粒界状態図」の構築を試みる。
|
Outline of Final Research Achievements |
This work attempted to integrate density-functional-theory (DFT) calculations and machine-learning models and to efficiently determine free energies of grain boundaries, in order to understand their thermodynamic stability in ceramics materials. For this purpose, artificial-neural-network potentials were implemented and then combined with lattice dynamics and molecular dynamics simulations.In order to evaluate the predictive power,grain boundaries of Al were chosen as model systems,and their lattice vibrational modes and energetics were predicted by the ANN potential. As a result,our ANN potential was found to accurately predict the finite-temperature properties with the DFT level and practical computational cost, even for grain boundaries absent in training datasets.
|
Academic Significance and Societal Importance of the Research Achievements |
粒界の熱力学的安定性の微視的理解は、有限温度における多結晶材料の材料組織や巨視的特性を緻密制御する上で必須である。しかし理論解析では莫大な計算コストを要するため、系統的な知見は無く、有効な解析手法も確立されていなかった。本研究では第一原理計算と機械学習を組み合わせ、粒界特性を予測する機械学習型原子間ポテンシャルを構築し、その有用性を実証した。これにより、粒界の熱力学的安定性を高効率かつ高精度で予測する技術基盤が確立できた。今後、この手法を酸化物セラミックスを含む種々の材料に展開していくことで、粒界研究の発展に大きく貢献することが期待される。
|
Report
(3 results)
Research Products
(10 results)