• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Challenging research to integrate economics and machine learning using causal inference

Research Project

Project/Area Number 21K18428
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 7:Economics, business administration, and related fields
Research InstitutionKyoto University

Principal Investigator

Ida Takanori  京都大学, 経済学研究科, 教授 (60278794)

Project Period (FY) 2021-07-09 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2023: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2022: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywords因果推論 / 機械学習 / フィールド実験
Outline of Research at the Start

本研究は、計量経済学と機械学習の一長一短を学術的に評価し、家庭の節電行動を事例とした無作為比較対照法(RCT)からなるフィールド実験から得られたビッグデータをもとに、因果性の識別を巡って、因果的機械学習の利活用を経済学において確立します。計量経済学の目的はパラメーターの推定と仮説の検定にあり、説明変数が被説明変数に与える効果の信頼区間を調べたりします。機械学習の目的は予測にあり、機械学習では予測誤差を最小化することが求められます。このように、計量経済学と機械学習は目的が異なるが、トップクラスの経済学者が機械学習を因果推論のツールとして融合を進めています。

Outline of Final Research Achievements

In this research project, "Challenging Research on the Integration of Economics and Machine Learning with Causal Inference as the Glue Point", we will promote research on the integration of econometrics and machine learning, which have developed independently, using causal inference, which identifies cause and effect, as a cue to develop evidence-based policy making (EBPM), a new approach to policy making. The aim of this project is to respond to the societal demand for evidence-based policy making (EBPM) and to break new ground in empirical economics.

Academic Significance and Societal Importance of the Research Achievements

本研究は、計量経済学と機械学習の一長一短を学術的に評価し、家庭の節電行動を事例とした無作為比較対照法(RCT)からなるフィールド実験から得られたビッグデータをもとに、因果性の識別を巡って、因果的機械学習の利活用を経済学において確立します。計量経済学の目的はパラメーターの推定と仮説の検定にあり、説明変数が被説明変数に与える効果の信頼区間を調べたりしました。機械学習の目的は予測にあり、機械学習では予測誤差を最小化することが求められます。このように、計量経済学と機械学習は目的が異なるが、トップクラスの経済学者が機械学習を因果推論のツールとして融合を進めていました。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (3 results)

All 2023 2022

All Journal Article (3 results) (of which Peer Reviewed: 1 results)

  • [Journal Article] Selection on Welfare Gains: Experimental Evidence from Electricity Plan Choice2023

    • Author(s)
      Ito, K., T. Ida, and M. Tanaka
    • Journal Title

      American Economic Review

      Volume: 113.11 Pages: 2937-2973

    • Related Report
      2023 Annual Research Report
  • [Journal Article] The Effect of Information Provision on Stated and Revealed Preferences: A Field Experiment on the Choice of Power Tariffs Before and After Japanese Retail Electricity Liberalization2022

    • Author(s)
      Ishihara, T. and T. Ida
    • Journal Title

      Environmental and Resource Economics

      Volume: 82.3 Pages: 573-599

    • Related Report
      2022 Research-status Report 2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Heterogeneous Treatment Effects of Nudge and Rebate: Causal Machine Learning in a Field Experiment on Electricity Conservation2022

    • Author(s)
      Murakami, K., H. Shimada, Y. Ushifusa, and T. Ida
    • Journal Title

      International Economic Review

      Volume: 63.4 Pages: 1779-1803

    • Related Report
      2022 Research-status Report

URL: 

Published: 2021-07-13   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi