Project/Area Number |
21K18690
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 19:Fluid engineering, thermal engineering, and related fields
|
Research Institution | Osaka University |
Principal Investigator |
|
Project Period (FY) |
2021-07-09 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2023: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Fiscal Year 2022: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Fiscal Year 2021: ¥5,980,000 (Direct Cost: ¥4,600,000、Indirect Cost: ¥1,380,000)
|
Keywords | 熱伝導 / 界面熱抵抗 / 分子動力学 |
Outline of Research at the Start |
本研究では,物質のスケールや状態に依存しない熱伝導特性の一般的な記述のために,液体や固体を原子・分子にまで分解し,周波数分解した熱流に対する二つの原子・分子間の熱伝導特性を記述する関数を求めて,注目する系全体または局所領域の有効熱伝導率を表現することを研究目的とする.そのために,分子動力学解析を用いて二つの原子・分子間の熱伝導特性を表現する方法を考案し,熱平衡状態の諸物理量が与える影響を明らかにする.さらに,さまざまな界面を含む複雑な系における二つの原子・分子間熱伝導特性の分布をシミュレーションにより求めて,それらと巨視的な有効熱伝導率や界面熱抵抗との関係についても明らかにする.
|
Outline of Final Research Achievements |
In the present study, the calculation method of local thermal resistances at the atomic and molecular scale has been developed that represent the heat conduction characteristics in each local region, to provide a general description of heat conduction properties that are independent of scale and state by using the molecular dynamics simulation. This method made it possible to show the local thermal resistance distribution across the entire solid-liquid interface and clarified the cause of interfacial thermal resistance changes over a nanostructured heat transfer surface. Furthermore, we showed that a parallel thermal circuit model holds true to describe the relationship between each local thermal resistance and the overall interfacial thermal resistance. We also showed that the frequency-dependent local interface thermal conductance can be determined by Fourier transforming the heat flux passing through each local interface.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で提案した手法を用いると,原子・分子スケールの各局所領域における熱伝導特性を表す局所熱抵抗の空間分布を得ることが可能となるため,ナノ流体などの不均一媒体の有効熱伝導率変化や表面特性分布に依存した界面熱抵抗変化の要因の解明に役立てることができる.さらに,有効熱伝導率や有効熱抵抗の変化の要因が明らかとなるため,複雑な混合媒体や界面の巨視的な熱伝導特性を最適化するための微視的な指針を得ることができるようになり,工学的意義が高い.また,ナノ構造を有する固液界面における局所熱抵抗分布はこれまでに示されたことはなく,学術的にも新奇性がある.
|