Project/Area Number |
21K19008
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 35:Polymers, organic materials, and related fields
|
Research Institution | Tottori University |
Principal Investigator |
|
Project Period (FY) |
2021-07-09 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2023: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2022: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2021: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
|
Keywords | ペプチドナノファイバー / 人工細胞骨格 / スピロピラン / β-シート / 光異性化 / 自己集合 / リポソーム / ペプチド |
Outline of Research at the Start |
本研究では、細胞内のタンパク質繊維状集合体からなる「細胞骨格」の動的制御を模倣して、重合・脱重合を可逆的に動的制御できるペプチド分子集合体からなる「人工細胞骨格」を創製する。人工細胞骨格として、ナノファイバーを形成するβ-シート形成ペプチドの任意の位置にフォトクロミック分子であるスピロピランを結合させた分子を合成し、重合・脱重合を光制御する方法論を開拓する。また、これを用いて、リポソームや細胞の変形・運動を動的制御する人工細胞骨格を創製することに挑戦する。
|
Outline of Final Research Achievements |
Cytoskeletons in eukaryotic cells, such as microtubules and actin filaments, dynamically control cellular morphology by reversible constituent protein polymerization/depolymerization. We developed an artificial cytoskeleton-like system, in which reversible polymerization/depolymerization of spiropyran/merocyanine-modified peptide nanofiber in GUV dramatically changed the morphology of giant unilamellar vesicles with diameters that are near cell size. Spiropyran-modified peptide formed beta-sheet nanofibers, whereas merocyanine-form photoisomerization completely dissociated the nanofibers. Spherical GUVs that encapsulate the merocyanine-peptide dramatically changed into worm-like vesicles by the photoisomerization to the spiropyran-form. UV and visible light irradiation reversibly controlled the dramatic morphological changes in GUVs.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、球状GUVに内包したメロシアニン修飾ペプチドに可視光を照射すると、ワーム状ベシクルに劇的かつ可逆的な形態変化が誘発することを見出した。この分子設計は、細胞内でのアクチンナノファイバーや微小管などの細胞骨格の重合/脱重合を模倣した光制御人工細胞骨格の分子設計ガイドラインを与える。このような光制御人工細胞骨格を細胞内に導入することで、細胞の変形や移動を光で制御する革新的な分子技術が実現できると考えられる。また、将来の人工細胞や分子ロボットを構築する際の構成要素として、本研究で得られた成果が活用できると考えられるため、学術的意義は大きいと考えられる。
|