Geometric structure of integrable dynamical systems
Project/Area Number |
22K03383
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12020:Mathematical analysis-related
|
Research Institution | Tokyo University of Marine Science and Technology |
Principal Investigator |
竹縄 知之 東京海洋大学, 学術研究院, 教授 (70361805)
|
Project Period (FY) |
2022-04-01 – 2027-03-31
|
Project Status |
Granted (Fiscal Year 2023)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2026: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2025: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2024: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
|
Keywords | 力学系 / 可積分系 / パンルヴェ方程式 / 代数幾何 / 微分方程式 / 逆問題 |
Outline of Research at the Start |
本研究の目的は,4次元以上のパンルヴェ系やクラスター代数から定まる可積分力学系の各種性質を,相空間の幾何構造への作用を通じて明らかにすることである.本研究で扱う有理多様体の族は組みわせ論的な情報で記述できるものであり,本研究を通じて,力学系や線形方程式系という解析学的な対象の性質を幾何学を通じて組み合わせ論的に理解できるようになることが期待される.
|
Outline of Annual Research Achievements |
本年度はまず,昨年度に引き続き,微分方程式によって記述される高次元力学系を,自動微分を用いて制御する方法の実装に取り組みんだ.関連して,気象予測の補正問題にも取り組み,結果を論文誌に投稿した. 次に,4次元ガルニエ系の初期値問題について,初期値空間と対称性を調べ,その過程で,半整数の自己内積を持つルートがあるにも関わらず,それに対応するV. Kacの平行移動は可能であるという興味深いルート系が現れることを見出した.これらの結果を論文にまとめて論文誌に投稿した(受理済み).
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
一般論の構築まではできていないが,高次元の初期値空間の例の中で,予想されていなかった興味深い例を見出したことから,今後の研究の発展に期待ができるため.
|
Strategy for Future Research Activity |
高次元の可積分力学系の構成法そのものを見直し,保存量から力学系を構成する方法を見出したい.また,4次元ガルニエ系で現れたような,半整数の内積を持つ新しいルート系について新たな知見を得るべく,一般化の方法を調べる.
|
Report
(2 results)
Research Products
(4 results)