Project/Area Number |
22K20482
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0401:Materials engineering, chemical engineering, and related fields
|
Research Institution | Hiroshima University |
Principal Investigator |
Hirano Tomoyuki 広島大学, 先進理工系科学研究科(工), 助教 (40963674)
|
Project Period (FY) |
2022-08-31 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2023: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 固体高分子形燃料電池 / 酸化物 / マクロポーラス微粒子 / エアロゾルプロセス / 細孔制御 / 耐久性 / 火炎法 / 火炎噴霧熱分解法 / カソード |
Outline of Research at the Start |
燃料電池技術のさらなる普及のために,固体高分子形燃料電池(PEFC)の性能および耐久性の向上が求められている。特に,高電位における耐久性向上のために,カーボンの代替材料として金属酸化物担体の開発が検討されており,カーボンに匹敵するガス拡散性と発電性能の付与が課題となっている。本研究では,化学工学・微粒子工学の学理に基づき,金属酸化物担体微粒子と触媒層の規則的なマクロポーラス化および,その3次元構造解析を行う。特に,燃料電池デバイス中でもその構造が維持可能な,高い機械的安定性を有する規則性マクロポーラス微粒子・膜を作製し,高活性かつ高耐久性を有する次世代型のPEFC用電極触媒の開発を目指す。
|
Outline of Final Research Achievements |
This study aims to enhance the performance and durability of polymer electrolyte fuel cells (PEFCs) by developing mechanically stable, ordered macroporous oxide particles and analyzing the pore structure within the cells. Nanostructured oxide particles were synthesized using an spray flame method, and three-dimensional structural analysis was conducted using TEM, FIB-SEM, and X-ray CT to evaluate the battery performance. The results demonstrated that annealing treatment of metal oxide nanoparticles increased the porosity of the catalyst layer, thereby reducing gas diffusion resistance. Additionally, the high electrical conductivity and durability of Ir-supported TiO2 significantly contributed to excellent power generation performance, even under high potential conditions.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,独自に開発した火炎合成装置を用いて,金属酸化物粒子が有する細孔の規則性の制御を行い,固体高分子形燃料電池の担体としての耐久性と性能の向上を実現した。特に,焼成処理によるナノ粒子のネッキング構造の制御によって, 触媒層中の細孔構造が調整できることがわかり,電池性能に対する酸化物ナノ粒子のマクロ孔の意義が明らかとなった。これらの研究成果は,触媒層の細孔を制御するためのポーラス粒子設計に関する新たな知見となる。
|