• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

スクリャーニン・ホイン演算子とホイン・バンルベ対応に関する研究

Research Project

Project/Area Number 22KF0189
Project/Area Number (Other) 22F21320 (2022)
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeMulti-year Fund (2023)
Single-year Grants (2022)
Section外国
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionKyoto University

Principal Investigator

辻本 諭 (2023)  京都大学, 情報学研究科, 教授 (60287977)

Co-Investigator(Kenkyū-buntansha) GABORIAUD JULIEN  京都大学, 情報学研究科, 外国人特別研究員
Host Researcher 辻本 諭 (2022)  京都大学, 情報学研究科, 教授 (60287977)
Foreign Research Fellow GABORIAUD JULIEN  京都大学, 情報学研究科, 外国人特別研究員
Project Period (FY) 2023-03-08 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 2023: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2022: ¥800,000 (Direct Cost: ¥800,000)
Keywordshypergeometric functions / orthogonal polynomials / Sklyanin-Heun operator / multivariate functions / integrable systems / Heun operator / Integrable system
Outline of Research at the Start

We will develop the study of Sklyanin-Heun type operators and establish the missing links between the Heun and Painleve equations and the field of integrable systems. We also aim at generalizing these concept to the cases where q is a root of unity.

Outline of Annual Research Achievements

特殊関数の理論と応用について以下の結果が得られた.
・q→-1 Limits of Special Functions:さまざまな直交多項式族のq→-1極限に関する先行研究をもとに、より一般的な特殊関数、特に超幾何有理関数に拡張する試みが行われた。Askey-Wilson多項式の有理関数一般化であるWilson双直交有理関数を研究し、そのq→-1極限を得た。得られた関数の性質を特徴付けた。ここでの結果については3回の学会発表を行い,その成果をまとめた論文を執筆中である。
・Linear Algebra and Tridiagonal Pairs:Crampe氏との協力の中で、多変数特殊関数に関する新しい知見を得た.代数的アプローチは非常に有力であり、このような手法を用いて得られる特殊関数は、望ましい双スペクトル性質を持つことが保証されている.ここでは,多項式代数の表現を研究する代わりに、Tridiagonal pairsと呼ばれる線形代数の問題を研究し、これにより新しい多変数特殊関数の特定に成功した。この成果についても現在投稿準備中である.
上記以外にも,端緒が得られた研究として「Painleve; Equations and Sklyanin-Heun Operators:Sklyanin-Heun演算子を用いた,-1極限で得られるPainleve方程式に関する解析」などがあげられ,国際的な研究ネットワークの中で共同研究をすすめることができた.

Report

(2 results)
  • 2023 Annual Research Report
  • 2022 Annual Research Report
  • Research Products

    (10 results)

All 2023 2022 Other

All Int'l Joint Research (4 results) Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results) Presentation (5 results) (of which Invited: 1 results)

  • [Int'l Joint Research] Tours University(フランス)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] University de Montreal(カナダ)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Universite de Tours/Universite Savoie Mont Blanc(フランス)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Ghent University(ベルギー)

    • Related Report
      2022 Annual Research Report
  • [Journal Article] Bispectrality and biorthogonality of the rational functions of q-Hahn type2022

    • Author(s)
      Bussiere Ismael、Gaboriaud Julien、Vinet Luc、Zhedanov Alexei
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 516 Issue: 1 Pages: 126443-126443

    • DOI

      10.1016/j.jmaa.2022.126443

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Introducing q→-1 limits of biorthogonal rational functions: two instructive examples2023

    • Author(s)
      Julien Gaboriaud
    • Organizer
      10th International Congress on Industrial and Applied Mathematics
    • Related Report
      2023 Annual Research Report
  • [Presentation] Tridiagonal Pairs of Shape (1,2,2,...,2,2,1)2023

    • Author(s)
      Julien Gaboriaud
    • Organizer
      Algebraic structures and special functions in theoretical physics
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Hamiltonians with su(2) and su(3) symmetry and orthogonal polynomials2023

    • Author(s)
      Julien Gaboriaud
    • Organizer
      LAPTh Seminar, Annecy, France
    • Related Report
      2023 Annual Research Report
  • [Presentation] -1 Integrable Systems and Orthogonal Polynomials2022

    • Author(s)
      Julien Gaboriaud
    • Organizer
      2022 JSIAM annual meeting, Event held online
    • Related Report
      2022 Annual Research Report
  • [Presentation] A new q→-1 limit of Wilson’s Biorthogonal Rational Functions2022

    • Author(s)
      Julien Gaboriaud
    • Organizer
      From nonlinear waves to integrable systems 2022
    • Related Report
      2022 Annual Research Report

URL: 

Published: 2022-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi