• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

物理プロセスを組み込んだ深層学習による水田内温度環境の予測モデルの構築

Research Project

Project/Area Number 22KJ0781
Project/Area Number (Other) 22J10619 (2022)
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeMulti-year Fund (2023)
Single-year Grants (2022)
Section国内
Review Section Basic Section 41030:Rural environmental engineering and planning-related
Research InstitutionThe University of Tokyo

Principal Investigator

謝 文鵬  東京大学, 生産技術研究所, 特別研究員(PD)

Project Period (FY) 2023-03-08 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 2023: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2022: ¥900,000 (Direct Cost: ¥900,000)
Keywordspaddy field / PGNN / water temperature / 水田水温 / 熱収支モデル
Outline of Research at the Start

本研究では、 観測対象水田において取得した観測データに基づき、物理プロセスを組み込んだニューラルネットワークを構築し、水田内の温度環境を再現する機械学習モデルを開発する。また、開発した機械学習モデルに対して、計算精度や他地域への適用性の評価、感度分析を実施する。さらに機械学習モデルの決定プロセスを局所的な解釈可能性とグローバルな解釈可能性の観点から明らかにすることで、モデルの信頼性を評価する。最後に、気象予測と組み合わせて水田内の温度環境を予測することで、水稲の品質向上に向けた水管理を支援するツールのプロトタイプを提示する。

Outline of Annual Research Achievements

Firstly, a paper titled "Interpretable Framework of Physics-guided Neural Network with Attention Mechanism: Simulating Paddy Field Water Temperature Variations" was published in the esteemed journal WRR. This work elucidates the interpretability of a novel neural network framework integrated with physics guidance and attention mechanisms, specifically applied to simulate variations in paddy field water temperature.
Furthermore, another paper was published in 2022 in the journal Irrigation and Drainage, titled "Development of a short-term hybrid forecast model of paddy water temperature as an alert system for high-temperature damage." This research focuses on the development of a hybrid forecasting model tailored for predicting short-term paddy water temperature variations, crucial for mitigating high-temperature damage in agricultural settings.
Additionally, active participation was observed in the AGU conferences of 2022 and 2023, where presentations were delivered to showcase the latest advancements in the research domain.
In summary, over the course of these two years, significant insights have been gained into the integration of deep learning and physical models, along with an understanding of the advantages that deep learning offers for modeling natural phenomena. This research has notably enhanced the understanding and prediction capabilities of dynamic variations in paddy field temperatures. Moreover, valuable insights have been derived for informing agricultural irrigation systems, policy support, and guiding recommendations aimed at optimizing agricultural yields.

Report

(2 results)
  • 2023 Annual Research Report
  • 2022 Annual Research Report
  • Research Products

    (7 results)

All 2023 2022

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (5 results) (of which Int'l Joint Research: 5 results,  Invited: 1 results) Funded Workshop (1 results)

  • [Journal Article] Interpretable Framework of Physics‐Guided Neural Network With Attention Mechanism: Simulating Paddy Field Water Temperature Variations2022

    • Author(s)
      Xie W.、Kimura M.、Takaki K.、Asada Y.、Iida T.、Jia X.
    • Journal Title

      Water Resources Research

      Volume: 58 Issue: 5

    • DOI

      10.1029/2021wr030493

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Short-Term Prediction Model for Water Levels in Low-Lying Area applying DNN Trained by Observed and Artificially Generated Data2023

    • Author(s)
      Masaomi Kimura, Kei Awano, Yutaka Matsuno, Wenpeng Xie, Natsuki Yoshikawa
    • Organizer
      AGU23
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Using Machine Learning Approaches to Reveal the Environmental Drivers of Stomatal Conductance2023

    • Author(s)
      Hongmei Li, Gang Zhao, Wenpeng Xie, Kei Yoshimura
    • Organizer
      AGU23
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Physical-Theory Inclusion Neural Network for Accurate Paddy Water Temperature Simulation2023

    • Author(s)
      Wenpeng Xie, Masaomi Kimura, Runze Tian, Hongmei Li
    • Organizer
      AGU23
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] From Calibration to Parameter Learning: Applying Deep Learning Frameworks to Geoscientific Models2023

    • Author(s)
      Wenpeng Xie, Kei Yoshimura
    • Organizer
      CHES annual conforence
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] LSTM-based Meta-learning Framework to Simulate Water Temperature in Under-observed Paddy Fields with Few-Shot Monitoring Data2022

    • Author(s)
      Xie, W., Kimura, M., Takaki, K
    • Organizer
      AGU Fall Meeting
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Funded Workshop] AGU232023

    • Related Report
      2023 Annual Research Report

URL: 

Published: 2022-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi