Project/Area Number |
24656385
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Single-year Grants |
Research Field |
Inorganic materials/Physical properties
|
Research Institution | Kyoto University |
Principal Investigator |
FUJITA Koji 京都大学, 工学(系)研究科(研究院), 准教授 (50314240)
|
Project Period (FY) |
2012-04-01 – 2014-03-31
|
Project Status |
Completed (Fiscal Year 2013)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2013: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2012: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
|
Keywords | 表面プラズモン / ナノレーザー / プラズモニクス / 誘導放出 |
Research Abstract |
In this research, we numerically examine an asymmetric spaser; a resonant system comprising a dielectric core capped by a metal semishell. The proposed spaser emits unidirectionally along the axis of the semishell; this directionality depends neither on the incident polarization nor on the incident angle of the pump. The spasing efficiency of the semishell-capped resonator is one order of magnitude higher than that in the closed core-shell counterpart. Our calculations indicate that symmetry breaking can serve as a route to create unidirectional, highly intense, single-particle, coherent light sources at subwavelength scale.
|