Non-abelian extensions of number fields with restricted ramification
Project/Area Number |
25400028
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Waseda University |
Principal Investigator |
Ozaki Manabu 早稲田大学, 理工学術院, 教授 (80287961)
|
Research Collaborator |
MIZUSAWA Yasushi 名古屋工業大学, 准教授
FUJII Satoshi 金沢工業大学, 講師
ITOH Tsuyoshi 千葉工業大学, 准教授
OKANO Keiji 都留文科大学, 講師
TOHKAIRIN Mitsuru 大阪体育大学, 非常勤講師
Maire C. Franche-Comte大学, 教授
Movahhedi A. Limoges大学, 教授
Angles B. Caen大学, 教授
|
Project Period (FY) |
2013-04-01 – 2017-03-31
|
Project Status |
Completed (Fiscal Year 2016)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2015: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2014: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2013: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | Galois群 / 岩澤理論 / 制限分岐拡大 / 算術的同値 / 最大不分岐拡大 / Z_p-拡大 / ガロワ群 / 代数体 / 絶対Galois群 / Neukirch-内田の定理 / 代数的整数論 / 岩澤加群 |
Outline of Final Research Achievements |
In this research project, we obtain the followoing results: 1.A generalization of the Neukirch-Uchida Theorem to number fields of infinite degree, 2.Criterion of arithmetically equivalence in terms of Iwasawa modules with restricted ramification, 3. Criterion for commutativity of maximal unramified p-extensions over Z_p-extension fields.
|
Report
(5 results)
Research Products
(8 results)