• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of machine learning algorithms based on discrete convex analysis

Research Project

Project/Area Number 26280086
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Intelligent informatics
Research InstitutionOsaka University

Principal Investigator

Kawahara Yoshinobu  大阪大学, 産業科学研究所, 准教授 (00514796)

Co-Investigator(Kenkyū-buntansha) 永野 清仁  群馬大学, 社会情報学部, 准教授 (20515176)
岩田 具治  日本電信電話株式会社NTTコミュニケーション科学基礎研究所, 上田特別研究室, 主任研究員 (70396159)
Co-Investigator(Renkei-kenkyūsha) HIRAI Hiroshi  東京大学, 大学院情報理工学系研究科, 准教授 (20378962)
KANEMURA Atsunori  産業技術総合研究所, 情報数理研究グループ, 研究員 (50580297)
ISHIHATA Masakazu  日本電信電話株式会社, NTTコミュニケーション科学研究所, 研究員 (80726563)
TAKEUCHI Koh  日本電信電話株式会社, NTTコミュニケーション科学研究所, 研究員 (30726568)
Project Period (FY) 2014-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥15,990,000 (Direct Cost: ¥12,300,000、Indirect Cost: ¥3,690,000)
Fiscal Year 2017: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2016: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2015: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2014: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Keywords機械学習 / 組合せ最適化 / 最適化
Outline of Final Research Achievements

In this study, we developed several machine learning algorithms based on discrete convexity such as submodularity. In particular, we developed efficient learning algorithm with structured sparsity, which is formulated with continuous relaxations of submodular functions. We applied those to problems in several engineering fields, and confirmed the proposed methods effectiveness in those problems.

Report

(5 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Annual Research Report
  • 2015 Annual Research Report
  • 2014 Annual Research Report
  • Research Products

    (27 results)

All 2017 2016 2015 2014 Other

All Int'l Joint Research (3 results) Journal Article (10 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 10 results,  Open Access: 6 results,  Acknowledgement Compliant: 4 results) Presentation (12 results) (of which Int'l Joint Research: 2 results,  Invited: 9 results) Book (1 results) Patent(Industrial Property Rights) (1 results)

  • [Int'l Joint Research] 南洋理工大学(シンガポール)

    • Related Report
      2016 Annual Research Report
  • [Int'l Joint Research] 北京大学/マイクロソフトリサーチアジア(中国)

    • Related Report
      2016 Annual Research Report
  • [Int'l Joint Research] ワシントン大学(米国)

    • Related Report
      2015 Annual Research Report
  • [Journal Article] Structurally regularized non-negative tensor factorization for spatio-temporal pattern discoveries,"2017

    • Author(s)
      Koh Takeuchi, Yoshinobu Kawahara, and Tomoharu Iwata
    • Journal Title

      ECML PKDD 2017: Machine Learning and Knowledge Discovery in Databases

      Volume: -- Pages: 582-598

    • DOI

      10.1007/978-3-319-71249-9_35

    • ISBN
      9783319712482, 9783319712499
    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Sparse Nonnegative Dynamic Mode Decomposition2017

    • Author(s)
      Noya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi
    • Journal Title

      Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP)

      Volume: -- Pages: 2682-2686

    • DOI

      10.1109/icip.2017.8296769

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Representative selection with structured sparsity2017

    • Author(s)
      H. Wang, Y. Kawahara, C. Weng, and J. Yuan
    • Journal Title

      Pattern Recognition

      Volume: 63 Pages: 268-278

    • DOI

      10.1016/j.patcog.2016.10.014

    • NAID

      40020236977

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Efficient generalized fused Lasso and its applications2016

    • Author(s)
      B. Xin, Y. Kawahara, Y. Wang, L. Hu, and W. Gao
    • Journal Title

      ACM Transactions on Intelligent Systems and Technology

      Volume: 7 Issue: 4 Pages: 1-22

    • DOI

      10.1145/2847421

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Toxicogenomic prediction with graph-based structured regularization on transcription factor network2016

    • Author(s)
      K. Nagata, Y. Kawahara, T. Washio, and A. Unami
    • Journal Title

      Fundamental Toxicological Sciences

      Volume: 3 Issue: 2 Pages: 39-46

    • DOI

      10.2131/fts.3.39

    • NAID

      130005129243

    • ISSN
      2189-115X
    • Related Report
      2015 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Higher Order Fused Regularization for Supervised Learning with Grouped Parameters2015

    • Author(s)
      K. Takeuchi, Y. Kawahara, and T. Iwata
    • Journal Title

      Proc. of the 2015 European Conf. on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD'15)

      Volume: -- Pages: 577-593

    • Related Report
      2015 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Toxicogenomic prediction with group sparse regularization based on transcription factor network information2015

    • Author(s)
      K. Nagata, Y. Kawahara, T. Washio, and A. Unami
    • Journal Title

      Fundamental Toxicological Sciences

      Volume: 2 Issue: 4 Pages: 161-170

    • DOI

      10.2131/fts.2.161

    • NAID

      130005100439

    • ISSN
      2189-115X
    • Related Report
      2015 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] On approximate non-submodular minimization via tree-structured supermodularity2015

    • Author(s)
      Y. Kawahara, R. Iyer and J.A. Bilmes
    • Journal Title

      Proc. of the 18th Int'l Conf. on Artificial Intelligence and Statistics (AISTATS'15)

      Volume: -- Pages: 444-452

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Efficient Generalized Fused Lasso with Application to the Diagnosis of Alzheimer’s Disease2014

    • Author(s)
      B. Xin, Y. Kawahara, Y. Wang and W. Gao
    • Journal Title

      Proc. of the 28th AAAI Conf. on Artificial Intelligence (AAAI’14)

      Volume: -- Pages: 2163-2169

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Multi-task feature selection with multiple networks via maximum flows2014

    • Author(s)
      M. Sugiyama, C. Azencott, G. Dominik, Y. Kawahara and K. Borgwardt
    • Journal Title

      Proc. of the 2014 SIAM Conf. on Data Mining (SDM'14)

      Volume: -- Pages: 199-207

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] 遺伝子工学的に開発した蛍光プローブによる細胞生理機能超解像イメージング2017

    • Author(s)
      和沢鉄一, 新井由之, 河原吉伸, 中野雅裕, 松田知己, 鷲尾隆, 永井健治
    • Organizer
      第31回人工知能学会全国大会
    • Related Report
      2017 Annual Research Report
  • [Presentation] 劣モジュラ性を用いた機械学習:適応的劣モジュラ性を中心として2017

    • Author(s)
      河原吉伸
    • Organizer
      計測制御自動学会SI部門ロボットマニピュレーションに関する技術調査研究会主催定例講演会
    • Place of Presentation
      大阪
    • Related Report
      2016 Annual Research Report
    • Invited
  • [Presentation] Parametric Submodular Minimization in Machine Learning2016

    • Author(s)
      Y. Kawahara
    • Organizer
      Probabilistic Graphical Model Workshop: Sparsity, Structure and High-dimensionality
    • Place of Presentation
      The Institute of Statistical Mathematics
    • Year and Date
      2016-03-23
    • Related Report
      2015 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 潜在グループ正則化学習におけるグループ構造の自動発見2016

    • Author(s)
      宮澤桂, 河原吉伸, 鷲尾隆
    • Organizer
      第30回人工知能学会全国大会
    • Place of Presentation
      小倉
    • Related Report
      2016 Annual Research Report
  • [Presentation] 劣モジュラ最適化に基づく特徴選択と構造正則化入門2015

    • Author(s)
      河原吉伸
    • Organizer
      第4回IBISMLチュートリアル
    • Place of Presentation
      つくば国際会議場
    • Year and Date
      2015-11-28
    • Related Report
      2015 Annual Research Report
    • Invited
  • [Presentation] 劣モジュラ関数による構造と学習の橋渡し:構造正則化,確率的劣モジュラ2015

    • Author(s)
      河原吉伸
    • Organizer
      第18回情報論的学習理論ワークショップ(IBIS'15)
    • Place of Presentation
      つくば国際会議場
    • Year and Date
      2015-11-25
    • Related Report
      2015 Annual Research Report
    • Invited
  • [Presentation] 構造的スパース性を用いた機械学習とその最適化2015

    • Author(s)
      河原吉伸
    • Organizer
      日本学術会議シンポジウム「by 機械学習 of 機械学習」
    • Place of Presentation
      日本学術会議
    • Year and Date
      2015-11-24
    • Related Report
      2015 Annual Research Report
    • Invited
  • [Presentation] 劣モジュラ最適化とパターン認識2015

    • Author(s)
      河原吉伸
    • Organizer
      パターン認識・メディア理解研究会(PRMU)
    • Place of Presentation
      信州大学工学部
    • Year and Date
      2015-11-21
    • Related Report
      2015 Annual Research Report
    • Invited
  • [Presentation] Learning with Structured Sparsity and Its Efficient Optimization2015

    • Author(s)
      Y. Kawahara
    • Organizer
      The 16th RIES-HOKUDAI International Symposium
    • Place of Presentation
      Chateraise Gateaux Kingdom Sapporo
    • Year and Date
      2015-11-10
    • Related Report
      2015 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 機械学習における劣モジュラ最適化と疎性モデリングへの応用2015

    • Author(s)
      河原吉伸
    • Organizer
      第59回システム制御情報学会研究発表講演会
    • Place of Presentation
      大阪
    • Year and Date
      2015-05-21
    • Related Report
      2014 Annual Research Report
    • Invited
  • [Presentation] 機械学習における劣モジュラ最適化と疎性モデリングへの応用2015

    • Author(s)
      河原吉伸
    • Organizer
      第59回システム制御情報学会研究発表講演会(SCI’15)
    • Place of Presentation
      中央電気倶楽部
    • Year and Date
      2015-05-20
    • Related Report
      2015 Annual Research Report
    • Invited
  • [Presentation] 構造正則化学習を用いた混雑シーンにおける異常検知2014

    • Author(s)
      掃部健,河原吉伸,鷲尾隆
    • Organizer
      第28回人工知能学会全国大会
    • Place of Presentation
      愛媛
    • Year and Date
      2014-05-12 – 2014-05-15
    • Related Report
      2014 Annual Research Report
  • [Book] 劣モジュラ最適化と機械学習2015

    • Author(s)
      河原吉伸,永野清仁
    • Total Pages
      192
    • Publisher
      講談社サイエンティフィック
    • Related Report
      2015 Annual Research Report
  • [Patent(Industrial Property Rights)] 機械学習のための一般化高階結合正則化による解析装置2016

    • Inventor(s)
      竹内孝,河原吉伸,岩田具治
    • Industrial Property Rights Holder
      竹内孝,河原吉伸,岩田具治
    • Industrial Property Rights Type
      特許
    • Filing Date
      2016-03-30
    • Related Report
      2015 Annual Research Report

URL: 

Published: 2014-04-04   Modified: 2022-02-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi