• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

integrable system and moduli theory of derived category

Research Project

Project/Area Number 26400043
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionKyoto University

Principal Investigator

Inaba Michiaki  京都大学, 理学研究科, 准教授 (80359934)

Research Collaborator Saito Masa-Hiko  
Abe Takeshi  
Mochizuki Takuro  
Yoshioka Kota  
Komyo Arata  
Project Period (FY) 2014-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2015: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2014: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywordsモジュライ / 不確定接続 / 一般モノドロミー保存変形 / 可積分系 / 接続 / 不確定特異点 / 合流問題 / 分岐不確定特異点 / 導来圏 / ベクトル束
Outline of Final Research Achievements

I constructed the moduli space of irreuglar singular connections on algebraic curves. It was difficult to formulate the moduli of ramifeid irregular singular connections, but I succeeded in its formulation and proved that the moduli space of ramified irregular singular connections is smooth with a symplectic structure.
On the other hand, the construction of the unramified irregular singular connections is rather easy and we can construct the generalized isomonodromic deformation based on the Jimbo-Miwa-Ueno theory on the unramified moduli spaces.
I also constructed a deformation of the unramified moduli space to the regular singular moduli spaces and gave a local analytic lift of the generalized isomonodromic deformation.

Academic Significance and Societal Importance of the Research Achievements

不確定特異点の一般モノドロミー保存変形は,神保・三輪・上野の理論によって確立された可積分系で,ソリトン解を導くなど,幅広い分野へのインパクトを与える理論である.一般モノドロミー保存変形の大域的性質を概念的に捉えるためには、代数曲線上の不確定接続のモジュライ空間で定式化すると明快になる.特に分岐不確定の場合は,モジュライ空間の定式化自体が特に一般種数の場合に非自明であったが,本研究において,局所指数がある種のgenericな条件を満たす場合にその定式化と構成に成功した.

Report

(6 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (9 results)

All 2019 2018 2017 2014

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (7 results) (of which Int'l Joint Research: 4 results,  Invited: 7 results)

  • [Journal Article] Moduli of regular singular parabolic connections with given spectral type on smooth projective curves2018

    • Author(s)
      M. Inaba, M.-H. Saito
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 70 Issue: 3 Pages: 879-894

    • DOI

      10.2969/jmsj/76597659

    • NAID

      130007420331

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Moduli of regular singular parabolic connections with given spectral type on smooth projective curves2018

    • Author(s)
      Michi-aki Inaba, Masa-Hiko Saito
    • Journal Title

      Journal of the Mathematical Society of Japan (受理され印刷準備中)

      Volume: 印刷中

    • NAID

      130007420331

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Unfolding of the unramified irregular singular generalized isomonodromic deformation2019

    • Author(s)
      Michiaki Inaba
    • Organizer
      Discussion meeting ``Bundles -2019''
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Moduli space of regular singular parabolic connections and isomonodromic deformation2018

    • Author(s)
      Michiaki Inaba
    • Organizer
      ICTS program ``Quantum fields, Geometry and Representation Theory''
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Unfolding of the moduli space of unramified irregular singular conenctions2018

    • Author(s)
      Michiaki Inaba
    • Organizer
      ICTS program ``Quantum fields, Geometry and Representation Theory''
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Unfolding of the moduli space of unramified irregular connections2018

    • Author(s)
      稲場 道明
    • Organizer
      熊本代数幾何セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Moduli space of irregular singular connections of generic ramified type2017

    • Author(s)
      Michiaki Inaba
    • Organizer
      Moduli spaces of sheaves and related topics
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2017-02-01
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Moduli space of parabolic connections, isomonodromic deformation2017

    • Author(s)
      稲場 道明
    • Organizer
      研究集会「モジュライ空間の幾何学と可積分系」
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] On the moduli of ramified connections on a smooth projective curve2014

    • Author(s)
      Michiaki Inaba
    • Organizer
      Moduli spaces of connections
    • Place of Presentation
      Rennes University
    • Year and Date
      2014-07-01 – 2014-07-03
    • Related Report
      2014 Research-status Report
    • Invited

URL: 

Published: 2014-04-04   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi