• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Overviews and constructions of Dirichlet form theory on non-Archimedean space on a basis of hierarchical structure

Research Project

Project/Area Number 26400150
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionTokyo University of Science

Principal Investigator

Kaneko Hiroshi  東京理科大学, 理学部第一部数学科, 教授 (90194919)

Project Period (FY) 2014-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2017: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2016: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywordsマルコフ過程 / 木(ツリー) / 超距離空間 / 関数空間 / 容量 / 統計的推論 / 擬似乱数 / 固有関数 / 木構造 / 階層構造 / 理想境界 / 非アルキメデス的距離 / ディリクレ空間
Outline of Final Research Achievements

This project began with taking advantage of stochastic counterpart of the Bessel kernels and a framework on Sobolev-Orlicz capacity on ends of a tree has been invented so that capacitary estimates are derived from a spectral analytical classification of eigenfunctions according to design of tree. In second, a modified Van der Corput sequence in the ring of p-adic integers has been introduced so as to be a counterpart of Weyl’s irrational rotation on the unit interval. On the ring, a similar random Weyl sampling to the one by Sugita and Takanobu is also newly built. In third, Ben Amor’s result which had shown an important relationship of Orlicz norm with a capacitary estimate was focused on. As a result, capacitary estimates for fundamental subsets in the ends of a tree have been found in terms of a Radon measure, where a canonical orthonormal basis in the family of square integrable functions can be freed from the orthogonality determined by Dirichlet form in existing formalisms.

Report

(5 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (9 results)

All 2017 2016 2015 2014

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Acknowledgement Compliant: 2 results) Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 2 results) Book (2 results)

  • [Journal Article] A pairwise independent random sampling method in the ring of p-adic integers2016

    • Author(s)
      Hiroshi Kaneko,Hisaaki Matsumoto
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 53 Pages: 775-798

    • NAID

      120005986278

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] CAPACITARY ESTIMATE ON THE SPACE OF ENDS OF TREE BASED ON ORLICZ NORM2016

    • Author(s)
      Ryutaro, Iijima, Hiroshi Kaneko
    • Journal Title

      Facta Universitatis, Series Physics, Chemistry and Technology

      Volume: 14 Pages: 120-127

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Journal Article] Orlicz norm and sobolev-Orlicz capacity on ends of tree based on probabilisitic Bessel kernels2015

    • Author(s)
      Chaiki Hara, Ryutaro Iijima, Hiroshi Kaneko, Hisaaki Matsumoto
    • Journal Title

      p-adic numbers ultrametric analysis, and applications

      Volume: 7 Issue: 1 Pages: 24-38

    • DOI

      10.1134/s2070046615010033

    • Related Report
      2014 Research-status Report
    • Peer Reviewed
  • [Journal Article] A Dirichlett space on ends of tree and Dirichlet forms with a nodewise orthogonal property2014

    • Author(s)
      Hiroshi Kaneko
    • Journal Title

      Potential Analysis

      Volume: 41 Issue: 1 Pages: 245-268

    • DOI

      10.1007/s11118-013-9372-7

    • Related Report
      2014 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] 木に付随する末端空間における非線形容量2017

    • Author(s)
      金子 宏
    • Organizer
      ディリクレ形式と対称マルコフ過程
    • Related Report
      2017 Annual Research Report
  • [Presentation] An Orlicz space on ends of tree and superposition of nodewise given Dirichlet forms with tier-linkage2015

    • Author(s)
      Hiroshi Kaneko
    • Organizer
      International conference on p-adic mathematical physics and its applications
    • Place of Presentation
      Mathematical Institute of the Serbian Academy of Science and Arts
    • Year and Date
      2015-09-10
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Dirichlet space and Orlicz space on ends of tree associated with nodewise given Dirichlet forms with tier-linkage2014

    • Author(s)
      Hiroshi Kaneko
    • Organizer
      Stochoastic Processes, Analysis and Mathematical Physics
    • Place of Presentation
      Kansai Universtiy
    • Year and Date
      2014-08-25
    • Related Report
      2014 Research-status Report
    • Invited
  • [Book] Festschrift Masatoshi Fukushima2015

    • Author(s)
      Sergio Albeverio, Zhi-Ming Ma, Michael Roeckner, Martin Barlow, Nicolas Bouleau, Guillaume Poly, Mu-Fa Chen, Xin Chen, Feng-Yu Wang Jian Wang, Shizan Fang Andrey Pilipenko, Patrick J Fitzsimmons, ,Irina Penner, Wolfhard Hansen, Hiroshi Kaneko,他
    • Total Pages
      620
    • Publisher
      World Scinetific
    • Related Report
      2014 Research-status Report
  • [Book] Stochastic Analysis and Applications 20142014

    • Author(s)
      Domique Bakry, Erich Bauer, Jean Bertoin, Rene Carmona, Fransois Delarue, Ana Bella Curzerio, Remi Lasselle, Alexander Davie, Joscha Diehl, Peter K. Friz, Harald Oberhauser, Yidong Dong, Ronnie Sircar, David Elworthy, Hans Follmer, Claudia Kluppelberg, Masatoshi Fukushima, Hiroshi Kaneko,他
    • Total Pages
      503
    • Publisher
      Springer Verlag
    • Related Report
      2014 Research-status Report

URL: 

Published: 2014-04-04   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi