反応性添加物を用いたSOFC空気極のガラス質不純物への耐性の向上に関する研究
Project/Area Number |
26820297
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Inorganic materials/Physical properties
|
Research Institution | Kyushu University |
Principal Investigator |
BISHOP Sean 九州大学, カーボンニュートラル・エネルギー国際研究所, 助教 (30618822)
|
Project Period (FY) |
2014-04-01 – 2015-03-31
|
Project Status |
Discontinued (Fiscal Year 2014)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2015: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2014: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | Solid oxide fuel cell / electrode / impurity / durability |
Outline of Annual Research Achievements |
Fast oxygen exchange kinetics, a key figure of merit in solid oxide fuel cell (SOFC) electrodes, is often dramatically hindered by the presence of even small concentrations of impurities. Si, for example, is common in ceramics processing. It was found that rapid degradation of oxygen exchange kinetics occurred on dense thin films of Pr0.1Ce0.9O2-d (PCO), a mixed ionic electronic conducting electrode for SOFCs. A new optical transmission relaxation (OTR) technique was developed to aid in measuring kinetics on the bare film surfaces. A key advantage of this technique is that it does not require current collectors typical of conventional measurements. Si was identified by TEM and XPS as a significant surface impurity, which forms a blocking layer on the electrode surface. Deposition of a La oxide film was found to result in full recovery of oxygen exchange kinetics on the measured sample. La and Si oxides were found to interact with each other as identified by a shift in the O1s XPS peak and a systematic OTR study of films that likely react with Si (e.g. La, Sm oxides) and those that do not (e.g. Nb, Ti, Zn oxides). These results indicate that La may "clean" the surface of the SOFC electrode, thereby dramatically improving oxygen transport kinetics. Preliminary measurements of OTR on a La-PCO solid solution indicates improved long-term electrode kinetics stability, demonstrating the commercial potential of this method to achieve Si impurity tolerance.
|
Report
(1 results)
Research Products
(6 results)