• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On the Rang of Mordell-Well group of Elliptic curves.

Research Project

Project/Area Number 60540035
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 代数学・幾何学
Research InstitutionNAGOYA INSTITUT OF TECHNOLOGY

Principal Investigator

MIWA Megumu  NAGOYA INSTITUT OF TECHNOLOGY, 工学部, 教授 (30011521)

Co-Investigator(Kenkyū-buntansha) WATANABE Keiichi  NAGOYA INSTITUT OF TECHNOLOGY, 工学部, 助教授 (10087083)
TAKEMOTO Fumio  NAGOYA INSTITUT OF TECHNOLOGY, 工学部, 助教授 (50022645)
KATO Akikuni  NAGOYA INSTITUT OF TECHNOLOGY, 工学部, 助教授 (20024226)
SHIMIZU Akinobu  NAGOYA INSTITUT OF TECHNOLOGY, 工学部, 助教授 (10015547)
Project Period (FY) 1985 – 1986
Project Status Completed (Fiscal Year 1986)
Budget Amount *help
¥2,700,000 (Direct Cost: ¥2,700,000)
Fiscal Year 1986: ¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 1985: ¥1,500,000 (Direct Cost: ¥1,500,000)
Keywords楕円曲線のMordell-Weil群の階数について
Research Abstract

The Mordell-Weil group of elliptic curve itself is not only a very interessting theme of mathematical research but also a very important one in connection with number theory especially arithmetic of elliptic curves. Since H. Poincare defined the Rang of elliptic curves and proposed the problem, to what number should be attained by Rang, it have been a important theme of algebraic geometry to get the upper bound of the Rang. L.J. Mordell proved the finiteness of that number but the boundedness has not been showed tillnow. By this reason the research is carried on to seak examples of elliptic curves with possiblly large rank. Tate & Shafarevich'sresult on the case of rational function field suggests the unboundedness of the rank of elliptic curves in general, but I am sorry not to have any answer to this problem now. For the reseach in the future it seams to be very important to investigate the historical development and clearify the results of research at present.

Report

(1 results)
  • 1986 Final Research Report Summary
  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] 三輪恵: NIT Seminar Report on Mathematics. 32. 1-57 (1987)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] 清水昭信: NIT Seminar Report on Mathematics. 24. 1-15 (1986)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] 渡辺敬一: Hiroshima Mathematical Journal. 15. 321-340 (1985)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] 渡辺敬一: Hiroshima Mathematical Journal. 15. 27-54 (1985)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] Megumu, MIWA: "On the Rank of Mordell-Weil group of Elliptic curves" NIT Seminar Report on Mathematics. 32. 1-57 (1987)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] Akinobu,SHIMIZU: "Stationary distribution of a diffusion process taking Ovalues in probability distributions on the partitions" NIT Seminar Report on Mathematics. 24. 1-15 (1986)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] Keiichi, WATANABE: "Study of three-dimensional algebras with straightening laws which are Gorenstein domains <I> " Hiroshima Mathematical Journal. 15. 27-54 (1985)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] Keiichi, WATANABE: "Study of three-dimensional algebras with straightening laws which are Gorensteins <II> " Hiroshima Mathematical Journal. 15. 321-340 (1985)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary

URL: 

Published: 1987-03-31   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi