Publicly Offered Research
Grant-in-Aid for Transformative Research Areas (A)
本研究の概要は、大強度ビーム加速における空間電荷効果への定量的な評価や、ビームハローに起因するロスの低減といった問題に対して、機械学習を用いたビーム物理研究への新たなアプローチの開拓を目指すものである。具体的には、大強度リニアックの前段部輸送系をモデルケースとして、プロファイルモニタで測定できる時空間方向の2次元プロファイルの画像データから、畳み込みニューラルネットワーク(CNN)でビームの特徴量である位相空間パラメータの推定手法を開発する研究である。また、CNNによるパラメータの推定精度や計算コストの観点から、ビームプロファイル解析への画像認識導入の妥当性を検証する。