Skip to main content
Log in

Radiated Energy of Great Earthquakes from Teleseismic Empirical Green’s Function Deconvolution

Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We expand on the empirical Green’s function deconvolution method of Ide et al. (2011) to estimate radiated energy for the six largest earthquakes worldwide over the last 10 years: 2011 M w 9.0 Tohoku-Oki, 2004 M w 9.1 Sumatra, 2010 M w 8.8 Maule, 2005 M w 8.7 Nias, 2007 M w 8.5 Bengkulu, and 2012 M w 8.6 off-Sumatra. Deconvolution of P, SV and SH components gives consistent energy results that are comparable to estimates found independently by other researchers. Apparent stress for the five great thrust earthquakes is between 0.4 and 0.8 MPa, while the 2012 off-Sumatra strike-slip earthquake has a higher apparent stress of 3 MPa, which is consistent with other studies that find a tendency for strike-slip events to be more energetic. Our results are within the spread of apparent stress from the wider global earthquake population over a large magnitude range. The azimuthal distribution of energy in each case shows signs of directivity, and in some cases, shows less energy radiated in the trench-ward direction, which may suggest enhanced tsunami potential. We find that eGfs as small as ~M 6.5 can be used for teleseismic deconvolution, and that an eGf-mainshock magnitude difference of 1.5 units yields stable results. This implies that M 8 is the minimum mainshock size for which teleseismic eGf deconvolution will work well. We propose that a database of eGf events could be used to calculate radiated energy and apparent stress of great, hazardous events in near real time, i.e., promptly enough that it could contribute to rapid response measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Abercrombie, R. E. (1995), Earthquake source scaling relationships from −1 to 5 ML using seismograms recorded at 2.5-km depth, J. Geophys. Res., 100(B12), 24015–24036, doi:10.1029/95JB02397.

  • Abercrombie, R. E. (2013), Comparison of direct and coda wave stress drop measurements for the Wells, Nevada, earthquake sequence, J. Geophys. Res., 118, doi:10.1029/2012JB009638.

  • Ammon, C. J., A. A. Velasco and T. Lay (1993), Rapid estimation of rupture directivity: application to the 1992 Landers (MS = 7.4) and Cape Mendocino (Ms = 7.2), California earthquakes, Geophy. Res. Lett., 20(2), 97–100.

  • Ammon, C. J., C. Ji, H.-K. Thio, D. Robinson, S. Ni, V. Hjorleifsdottir, H. Kanamori, T. Lay, S. Das, D. Helmberger, G. Ichinose, J. Polet and D. Wald (2005), Rupture Process of the 2004 Sumatra-Andaman Earthquake, Science, 308(5725), 1133–1139. doi:10.1126/science.1112260.

  • Aster, R. C., D. E. McNamara, and P. D. Bromirski (2008), Multidecadal climate-induced variability in microseisms, Seismo. Res. Lett., 79(2):194–202.

    Google Scholar 

  • Baltay, A., G. Prieto and G. C. Beroza (2010), Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic moment. J. Geophys. Res. 115, B08314.

  • Baltay, A., S. Ide, G. Prieto, and G.Beroza (2011), Variability in earthquake stress drop and apparent stress, Geophys. Res. Lett., 38, L06303, doi:10.1029/2011GL046698.

  • Banerjee, P., F. F. Pollitz, and R. Burgmann (2005), The size and duration of the Sumatra-Andaman earthquake from far-field offsets, Science, 308, 1769–1772.

    Google Scholar 

  • Billham, R. (2005), A flying start, then a slow slip, Science, 308, 1126–1127.

    Google Scholar 

  • Boatwright, J. and G. Choy (1986), Teleseismic estimates of the energy radiated by shallow earthquakes, J. Geophys. Res., 91, 2095–2112.

    Google Scholar 

  • Bormann, P., and D. Di Giacomo, (2011), The moment magnitude M w and the energy magnitude M e : common roots and differences, Journ. of Seismol., 15(2), 411–427.

  • Chlieh, M., J-P. Avouac, V. Hjorleifsdottir, T-R A. Song, C. Ji, K. Sieh, A. Sladen, H. Hebert, L. Prawirodirdjo, Y. Bock, and J. Galetzka (2007), Coseismic Slip and Afterslip of the Great Mw 9.15 Sumatra-Andaman Earthquake of 2004, Bull. Seismol. Soc. Am., 97, 152–173.

  • Choy, G. L., and J. L. Boatwright (1995), Global patterns of radiated seismic energy and apparent stress, J. Geophys. Res., 100, 18,205–18,228.

    Google Scholar 

  • Choy, G. L., A. McGarr, S. H. Kirby and J. Boatwright (2006), An overview of the global variability in radiated energy and apparent stress, in Earthquakes: Radiated energy and the physics of faulting, Geophysical Monograph Series, 170, 43–57, doi:10.1029/170GM01.

  • Convers, J. A., and A. V. Newman (2011), Global evaluation of large earthquake energy from 1997 through mid-2010, J. Geophys. Res., 116, B08304, doi:10.1029/2010JB007928.

  • Courboulex, F., Virieux, J., Deschamps, A., Gibert, D. and Zollo, A. (1996), Source investigation of a small event using empirical Green’s functions and simulated annealing. Geophys. J. Int., 125:768–780. doi:10.1111/j.1365-246X.1996.tb06022.x.

  • Dean, S.M., L. C. McNeill, T. J. Henstock, J. M. Bull, S. P. S. Gulick, J. A. Austin, Jr., N. L. B. Bans, Y. S. Djajadihardja and H. Permana (2010), Contrasting decollement and prism properties over the Sumatra 2004–2005 earthquake rupture boundary, Science, 329, 207–210.

  • Di Giacomo, D., S. Parolai, P. Bormann, H. Grosser, J. Saul, R. Wang, and J. Zschau (2010), Suitability of rapid energy magnitude determinations for emergency response purposes, Geophys. J. Int., 180(1): 361–374, doi:10.1111/j.1365-246X.2009.04416.x.

  • Favreau, P. and R. J. Archuleta (2003), Direct seismic energy modeling and application to the 1979 Imperial Valley earthquake, Geophy. Res. Lett., 30(5), 1198, doi:10.1029/2002GL015968.

  • Hanks, T. C., and W. Thatcher (1972), A graphical representation of seismic source parameters, J. Geophys. Res. 77, 4292–4405.

    Google Scholar 

  • Hartzell, S. H. (1978), Earthquake aftershocks as Green’s functions, Geophys. Res. Lett. 5(1), doi:10.1029/GL005i001p00001.

  • Hayes, G. (2010), Finite Fault Model. Updated Result of the Feb 27, 2010 Mw 8.8 Maule, Chile Earthquake. http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010tfan/finite_fault.php, (US Geological Survey/NEIC, 2010).

  • Hough, S. E. (2001), Empirical Green’s function analysis of recent moderate events in California, Bull. Seismol. Soc. Am., 91, 456–467.

    Google Scholar 

  • Ide, S., and G. C. Beroza (2001), Does apparent stress vary with earthquake size?, Geophys. Res. Lett., 28(17), 3349.

    Google Scholar 

  • Ide, S., G. C. Beroza, S. G. Prejean, and W. L. Ellsworth (2003), Apparent break in earthquake scaling due to path and site effects on deep borehole recordings, J. Geophys. Res., 108(B5), 2271, doi:10.1029/2001JB001617.

  • Ide, S., A. Baltay and G. C. Beroza (2011), Shallow dynamic overshoot and energetic deep rupture in the 2001 M w 9.0 Tohoku-Oki Earthquake, Science, 332, 6036, 1426–1429. doi:10.1126/science.1207020.

  • Ishii, M., P. M. Shearer, H. Houston and J. E. Vidale (2005), Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array, Nature, 435, doi:10.1038/nature03675.

  • Kanamori, H. (1972), Mechanism of tsunami earthquakes, Phys. Earth Planet. Inter. 6, 346–359.

  • Kanamori, H. (2006), The radiated energy of the 2004 Sumatra-Andaman earthquake, in Earthquakes: radiated energy and the physics of faulting, Geophysical Monograph Series, 170, 59–68, doi:10.1029/170GM10.

  • Kanamori, H. and J. Given (1981), Use of long-period surface waves for rapid determination of earthquake-source parameters. Phys. Earth Planet. Inter. 27, 8.

    Google Scholar 

  • Kane, D. L., G. A. Prieto, F. L. Vernon, and P. M. Shearer (2011), Quantifying seismic source parameter uncertainties, Bull. Seism. Soc. Am., 101, 535–543.

  • Kane, D. L., D. L. Kilb and F. L. Vernon (2013), Selecting empirical Green’s functions in regions of fault complexity; a study of data from the San Jacinto fault zone, Southern California, Bull. Seismol. Soc. Am., 103(2A), 641–650, doi:10.1785/0120120189.

  • Kiser, E. and Ishii, M. (2012), Combining seismic arrays to image the high-frequency characteristics of large earthquakes, Geophys. Jour. Inter., 188:1117–1128. doi:10.1111/j.1365-246X.2011.05299.x.

  • Konca, A.O., V. Hjorleifsdottir, T-R. A. Song, J.-P. Avouac, D. V. Helmberger, C. Ji, K. Sieh, R. Briggs, and A. Meltzner (2007), Rupture kinematics of the 2005 Mw 8.6 Nias-Simeulue earthquake from the joint inversion of seismic and geodetic data (in The 2004 Sumatra-Andaman earthquake and the Indian Ocean tsunami), Bull. Seismol. Soc. Am., 97(1A):S307–S322.

  • Konca, A. O., J-P Avouac, A. Sladen, A. J. Meltzner, K. Sieh, P. Fang, Z. Li, J. Galetzka, J. Genrich, M. Chlieh, D. H. Natawidjaja, Y. Bock, E. J. Fielding, C. Ji and D. Helmberger (2008), Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence, Nature, 456. doi:10.1038/nature07572.

  • Koper, K. D., Hutko, A. R., Lay, T., Ammon, C. J., and Kanamori, H. (2011). Frequency-dependent rupture process of the 2011 M w 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models. Earth, planets and space, 63(7), 599–602.

  • Lay, T., H. Kanamori, C. J. Ammon, M. Nettles, S. N. Ward, R. C. Aster, S. L. Beck, S. L. Bilek, M. R. Brudzinski, R. Butler, H. R. DeShon, G. Ekstrom, K. Satake, and S. Sipkin (2005). The great Sumatra- Andaman earthquake of 26 December 2004, Science 308, 1127–1133.

  • Lay, T., C. J. Ammon, H. Kanamori, Y. Yamazaki, K. F. Cheung, and A. R. Hutko (2011), The 25 October 2010 Mentawai tsunami earthquake (M w 7.8) and the tsunami hazard presented by shallow megathrust ruptures, Geophys. Res. Lett., 38, L06302, doi:10.1029/2010GL046552.

  • Lay, T., H. Kanamori, C. J. Ammon, K. D. Koper, A. R. Hutko, L. Ye, H. Yue, and T. M. Rushing (2012), Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311, doi:10.1029/2011JB009133.

  • Lay, T., Y. Fujii, E. Geist, K. Koketsu, J. Rubinstein, T. Sagiya, and M. Simons (2013), Introduction to the Special Issue on the 2011 Tohoku Earthquake and Tsunami, Bull. Seism. Soc. Am., 103:1165–1170, doi:10.1785/0120130001.

  • McGuire, J. J. and G. C. Beroza (2012), A rogue earthquakes off Sumatra, Science, 336, 6085, 1118–1119, doi:10.1126/science.1223983.

  • Meng, L., J.-P. Ampuero, J. Stock, Z. Duputel, Y. Luo and V. C. Tsai (2012), An earthquake in a maze: compressional rupture branching in a weakened oceanic lithosphere during the April 11 2012 M8.6 Sumatra earthquake, Science, 337:6095. doi:10.1126/science.1224030.

  • Moreno, M., M. Rosenau and O. Oncken (2010), 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone, Nature 467, 198–202 doi:10.1038/nature09349.

  • Mori, J. Frankel, A. (1990). Source parameters for small events associated with the 1986 North Palm Springs, California, earthquake determined using empirical Green functions, Bull. Seism. Soc. Am. 80, 278–295.

    Google Scholar 

  • Newman, A. V., and E. A. Okal (1998), Teleseismic estimates of radiated seismic energy: The E/M 0 discriminant for tsunami earthquakes, J. Geophys. Res., 103(B11), 26,885–26,898, doi:10.1029/98JB02236.

  • Newman, A. V., G. Hayes, Y. Wei, and J. Convers (2011), The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation, Geophys. Res. Lett., 38, L05302, doi:10.1029/2010GL046498.

  • Newman, A. (2011) Real-Time Earthquake Energy and Rupture Duration Determinations, http://geophysics.eas.gatech.edu/anewman/research/RTerg/2011/11031100/, Accessed November 6, 2011.

  • Owens, T.J., H. P. Crotwell, C. Groves, and P. Oliver-Paul (2004), SOD: Standing Order for Data. Seismol. Res. Lett., 75:515–520.

  • Pérez-Campos, X., and G. C. Beroza (2001), An apparent mechanism dependence of radiated seismic energy, J. Geophys. Res.; 106, 11,127–11,136.

    Google Scholar 

  • Perez-Campos, X., S. K. Singh and G. C. Beroza (2003) Reconciling teleseismic and regional estimates of seismic energy, Bull. Seismol. Soc. Am. 95(5), 2123–2130.

  • Royer, J. Y., and R. G. Gordon (1997). The motion and boundary between the Capricorn and Australian plates. Science, 277(5330), 1268–1274.

  • Sagiya, T., H. Kanamori, Y. Yagi, M. Yamada, and J. Mori (2011), Rebuilding seismology, Nature, 473, 146–148, doi:10.1038/473146a.

  • Singh, S. K., and Ordaz, M. (1994). Seismic energy release in Mexican subduction zone earthquakes. Bull. Seismol. Soc. Am, 84(5), 1533–1550.

    Google Scholar 

  • Suzuki, W., S. Aoi, H. Sekiguchi, and T. Kunugi (2011), Rupture process of the 2011 Tohoku-Oki mega-thrust earthquake (M9.0) inverted from strong-motion data, Geophys. Res. Lett., 38, L00G16, doi:10.1029/2011GL049136.

  • Venkataraman, A., L. Rivera, and H. Kanamori (2002), Radiated energy from the 16 October 1999 Hector Mine earthquake: Regional and teleseismic estimates, Bull. Seismol. Soc. Am., 92, 1256–1265, doi:10.1785/0120000929.

  • Venkataraman, A. and H. Kanamori (2004), Effect of directivity on estimates of radiated seismic energy, J. Geophys. Res., 109, B04301, doi:10.1029/2003JB002548.

  • Wyss, M. and J. Brune (1968), Seismic moment, stress, and source dimensions for earthquakes in the California-Nevada region, J. Geophys. Res., 73(14), 4681–4694, doi:10.1029/JB073i014p0468.

Download references

Acknowledgments

IRIS Standing Order of Data (SOD) (Owens et al. 2004) was used to acquire Global Seismic Network (GSN) data. The authors thank Jesse Lawrence for help with acquiring GSN data and use of SOD. The authors thank Adrien Oth, Kevin Mayeda and Lusi Rivera for organizing and convening the workshop “Earthquake source physics on various scales,” and ECGS for hosting. We also thank two anonymous reviewers and the guest editor, Adrien Oth, for their constructive comments and reviews which improved the manuscript. A. Baltay was partially supported at Stanford by a Gabilan Stanford Graduate Fellowship, as well as through financial support from Pacific Gas and Electric.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemarie S. Baltay.

Additional information

For submission to the special issue of Pure and Applied Geophysics (PAGEOPH), entitled “Earthquake Source Physics on Various Scales.”

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltay, A.S., Beroza, G.C. & Ide, S. Radiated Energy of Great Earthquakes from Teleseismic Empirical Green’s Function Deconvolution. Pure Appl. Geophys. 171, 2841–2862 (2014). https://doi.org/10.1007/s00024-014-0804-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-0804-0

Keywords

Navigation