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研究成果の概要（和文）：宇宙から飛来する高エネルギーの荷電粒子、宇宙線の生成機構として、無衝突衝撃波
による加速、磁気リコネクション、航跡場加速が有力な候補となっている。我々は、国内外の高出力および高強
度パワーレーザーを用いて、外部磁場中やレーザーによる自己生成磁場中の無衝突衝撃波生成、プラズマによっ
て駆動される磁気リコネクション、および非コヒーレントな航跡場加速の要素物理を明らかにする実験を行っ
た。その結果、プラズマ不安定性の成長から衝撃波生成にいたる時間発展や、磁気リコネクションにおけるプラ
ズマのダイナミクス、等が明らかになった。今後、レーザー実験で粒子加速の物理と宇宙線の起源に迫る事が期
待される。

研究成果の概要（英文）：As generation mechanisms of high-energy charged particles or cosmic rays 
coming from space, acceleration by collisionless shocks, magnetic reconnection, and wakefield 
acceleration are strong candidates. We studied collisionless shock generation in external magnetic 
fields and self-generated magnetic fields by lasers, plasma-driven magnetic reconnection, and 
incoherent wakefield acceleration using high-power and high-intensity lasers. In the experiments, 
the element physics of time-evolution of collisionless shock generation and dynamics of plasmas in 
magnetic reconnection, etc., were clarified. In the future, it is expected that the physics of 
particle acceleration and the origin of cosmic rays will be approached in laser experiments.

研究分野： プラズマ物理学

キーワード： レーザー宇宙物理学　無衝突衝撃波　磁気リコネクション　協同トムソン散乱計測　パワーレーザー

  ２版

令和

研究成果の学術的意義や社会的意義
宇宙からは、速度が大きくエネルギーの高い粒子、宇宙線が絶えず地球に到来している。宇宙線のエネルギーは
地上で加速器が達成することのできるエネルギーをはるかに超え、電波障害やIT機器の誤動作を誘発するのみな
らず、異常気象や地震の発生にも影響を与えていると考えられている。本研究では大型のパワーレーザーを用い
て、2つの宇宙線生成機構を実験的に研究した。恒星が一生終える時に生成される衝撃波と、太陽からの高エネ
ルギー粒子の生成機構である磁力線のつなぎかえ現象（磁気リコネクション）である。今後、レーザーを用いた
室内実験で宇宙線がどのように作られているかが明らかになる可能性が示された。
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shock, one can see that the plasmoid is detached from the plasma
flow. The arrows 1 and 2 correspond to 115 km s−1 and
16 km s−1, respectively, resulting in Δv= 50, which is the relative
velocity and independent of choice of the reference frame.

Discussion
In Fig. 1(f) the collimated electron flow in the presence of the
external magnetic field extends further than that without the
external field in Fig. 1(e). There are two possible explanations; (1)
the plasma is faster in the presence of the external perpendicular
magnetic field that that in the absence of the field, and (2) since
the electron is collimated in the presence of the external field, the
central electron density is higher than that without the external
field. Interferometry has a certain detective range of electron
density [e.g.,ref.21]. In the latter case, it is not necessary to assume
that the plasma is actually faster in the presence of the external
magnetic field. This can be confirmed with our simulations in
Supplementary Figures 2(a) and 2(b), where the electrons are
collimated in the presence of the external magnetic field while the
low density electrons propagate further in the absence of the field.
Furthermore, in the presence of an ambient plasma, where a
shock exists, the shock velocity is slightly faster in the absence of
the external magnetic field than that in the presence of magnetic
field as in Fig. 4(b) and Supplementary Figure 3. This clearly
shows that the plasma velocity in the presence of the external
magnetic field is similar to or slower than that in the absence of
the magnetic field. We consider the latter case in this paper. In
this scenario, the electron plasma in the presence of the magnetic
field does not extend further than the case in the absence of the
magnetic field. This is completely evident in Supplementary
Figure 2, where the simulations show that the magnetized elec-
trons are significantly retarded compared with the unmagnetized
case. Supplementary Figure 3 also demonstrates that the mag-
netized plasma does not move faster than the unmagnetized case.

Cusps and plasmoids are key features of the reconnection.
Plasmamoids play a fundametal role in the fast reconnections22–24.
If this plasmoid propagates at Alfvén velocity, one can conclude
that the plasmoid results from the reconnection. In our system only
electrons are directly coupled with the magnetic field, and thus, the
outflow velocity is relevant to the electron dynamics. The electron
Alfvén speed is defined with the electron mass as
cAe ¼ B= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ0neme
p . In order to estimate this, we use the initial

magnetic field B= 0.3 T and the electron density from Fig. 1(f). We
plotted the electron density in Fig. 1(f) up to 2 × 1019 cm−3 but the
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Fig. 3 Two dimensional snapshot of cusp and plasmoid. a Schematic view of
a magnetic reconnection. b Image of self-emission obtained with gated
charge coupled devise (CCD) camera at 35 ns after the main laser shot. The
target environment is gas-filled (5 Torr Nitrogen)
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Fig. 4 Time evolution of shock, plasma, and plasmoid. a Schematic Image of the time evolution of the magnetic reconnection. b Streaked self-emission
optical pyrometer (SOP) image. The white arrows 1 and 2 indicate the velocities of the plasma structures
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the plasma propagation. With vi= 500 km s−1 and B= 0.3 T the
proton gyroradius is rgi ! vimp=ðeBÞ $ 17mm (much larger than
our system), where the e is the element charge and mp is
the proton mass, and that of the carbon ion with its charge of
Z= 6 and mass of mc= 12mp is simply twice of the proton’s.
Besides, the electron gyroradius with the same velocity is
rge $ 9:5μm, so electrons are well magnetized in our
system and cannot freely propagate across the magnetic
field. Note that the ion velocity is estimated with the
interferogram, however, the ions are not magnetize in our
system, the ion velocity can be larger than our estimation. These
estimations provides minimums.

Plasma collimation. A simple explanation for the plasma colli-
mation is schematically shown in Fig. 2 (and also numerically
confirmed in the supplementary information as shown in Sup-
plementary Figure 1). In the presence of a weak magnetic field (B)
in vacuum a plasma propagates in the direction perpendicular to
the magnetic field. When the kinetic pressure is much larger than
the magnetic pressure, the magnetic field will be stretched by the
plasma. Stretching the field induces a new magnetic field as in
Fig. 2(a). In our system only electrons are trapped by the mag-
netic field, i.e., the space charge will be generated. Consequently
an electrostatic field (E) is excited across the distorted magnetic
field [Fig. 2(b)]. In the presence of the electric and magnetic
fields, the electrons move in the direction perpendicular to
the both fields due to the E × B drift. In a macroscopic system the
E × B drift does not carry a net current, however, in our micro-
scopic system, only the electrons are magnetized and produce
this. As a result, a finite current (J) carried by the electrons is
generated in the system [Fig. 2(b)], which has to be self-consistent
with the magnetic field distortion. While the induced field pre-
vents the transverse plasma expansion, the stretched field is more
parallel to the propagation axis, i.e., the plasma can freely pro-
pagate only along the plasma axis [Fig. 2(b)]. Therefore, there are
positive feedbacks to make plasma further collimated or thiner.

If the field is elongated, the local field above and below the
plasma axis is anti-parallel. So, if one can stretch the field long
enough, such as the Earth’s magnetotail or floating flux tube on
the Sun, magnetic reconnection is possible. In order to further
enhance the reconnection possibility, we add an ambient medium
(nitrogen gas) in the target chamber. This gas is ionized prior to
the jet arrival by the X-ray radiation coming from the
laser–matter interaction. The ambient plasma is pushed by the
jet and a bow shock is formed in the ambient plasma. The
shocked ambient plasma provides an external pressure on the jet
[Fig. 2(c)].

Figure 3(a) shows a schematic image of the plasma topology
associated with a magnetic reconnection. The plasma flow
elongates the magnetic fields and the anti-parallel magnetic field
lines can reconnect due to the external pressure of the shocked
ambient plasma. The reconnection transforms the magnetic
energy as plasma kinetic energy. The leading edge of the plasma is
detached from the jet and is released as a plasmoid. The cusp is an
acute structure often seen in magnetic reconnection11. Figure 3(b)
shows a two spatial dimensions (2D) snapshot image of self-
emission at 35 ns after the main laser beams fireing. The laser is
coming from the left and the nominal focal spot is located at
(x, y)= (0,0). Since the fast rear-side plasma unloades in the
ambient plasma, a bow shock is generated and clearly observed.
The faint structure at (1, 0) is a shock wave going from the other
side the target (x < 0) around to the rear side (x > 0). Behind the
shock, thin structures are evidently seen on the plasma
propagation axis (0≲x≲6mm and y= 0). These structures are
separated into two at ðx; yÞ $ ð3:6; 0Þ, where cusp like structures

form. Some plasma is separated from the main plasma flow, i.e., a
plasma island or plasmoid is formed.

Figure 4(a) show a schematic image of the time evolution of
reconnection. Elongated magnetic field lines release their tension
as outflows of a magnetic reconnection. The outflow velocity or
the plasmoid and also the rear-side plasma velocity with respect
to the reconnection point is considered to be of the order of the
Alfvén speed cA. Therefore, the separation velocity in Fig. 4(a), Δv
has to be of the order of cA. Figure 4(b) shows the time evolution
of the plasma on the propagation axis, obtained with the SOP
diagnostic. The fastest structure is the bow shock. Behind the
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(a)�

(b)�
shock, one can see that the plasmoid is detached from the plasma
flow. The arrows 1 and 2 correspond to 115 km s−1 and
16 km s−1, respectively, resulting in Δv= 50, which is the relative
velocity and independent of choice of the reference frame.

Discussion
In Fig. 1(f) the collimated electron flow in the presence of the
external magnetic field extends further than that without the
external field in Fig. 1(e). There are two possible explanations; (1)
the plasma is faster in the presence of the external perpendicular
magnetic field that that in the absence of the field, and (2) since
the electron is collimated in the presence of the external field, the
central electron density is higher than that without the external
field. Interferometry has a certain detective range of electron
density [e.g.,ref.21]. In the latter case, it is not necessary to assume
that the plasma is actually faster in the presence of the external
magnetic field. This can be confirmed with our simulations in
Supplementary Figures 2(a) and 2(b), where the electrons are
collimated in the presence of the external magnetic field while the
low density electrons propagate further in the absence of the field.
Furthermore, in the presence of an ambient plasma, where a
shock exists, the shock velocity is slightly faster in the absence of
the external magnetic field than that in the presence of magnetic
field as in Fig. 4(b) and Supplementary Figure 3. This clearly
shows that the plasma velocity in the presence of the external
magnetic field is similar to or slower than that in the absence of
the magnetic field. We consider the latter case in this paper. In
this scenario, the electron plasma in the presence of the magnetic
field does not extend further than the case in the absence of the
magnetic field. This is completely evident in Supplementary
Figure 2, where the simulations show that the magnetized elec-
trons are significantly retarded compared with the unmagnetized
case. Supplementary Figure 3 also demonstrates that the mag-
netized plasma does not move faster than the unmagnetized case.

Cusps and plasmoids are key features of the reconnection.
Plasmamoids play a fundametal role in the fast reconnections22–24.
If this plasmoid propagates at Alfvén velocity, one can conclude
that the plasmoid results from the reconnection. In our system only
electrons are directly coupled with the magnetic field, and thus, the
outflow velocity is relevant to the electron dynamics. The electron
Alfvén speed is defined with the electron mass as
cAe ¼ B= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p . In order to estimate this, we use the initial

magnetic field B= 0.3 T and the electron density from Fig. 1(f). We
plotted the electron density in Fig. 1(f) up to 2 × 1019 cm−3 but the
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Fig. 4 Time evolution of shock, plasma, and plasmoid. a Schematic Image of the time evolution of the magnetic reconnection. b Streaked self-emission
optical pyrometer (SOP) image. The white arrows 1 and 2 indicate the velocities of the plasma structures
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performed to distinguish these individual components:
single foil experiments to measure the effect of direct
laser heating, CD-CH interpenetrating flows to see the
contributions from stagnation heating and shock formation,
and CD-CD to see the contribution of direct beam-beam
interactions. From the counterstreaming CD-CD and
CD-CH interpenetrating flows, the measured neutron and
proton yields, spectrum, spatial distribution, and x-ray
emissions allow us to characterize the interactions and
differentiate the primary stagnation mechanisms. The
measurements are compared to 2D particle-in-cell simu-
lations of Coulomb ion scattering using the input from a 2D
hydrodynamic simulation that modeled the laser-target
interaction.
A typical experimental configuration is shown in Fig. 1:

a pair of CD-CD or CD-CH foils separated by 6–10 mm.
The foils are each irradiated with forty-eight 351 nm laser
beams, each delivering 5.2 kJ in a 5 ns square pulse. The
beams use continuous phase plates (CPPs) to produce focal
spots with a super-Gaussian exponent of 4.3 and a full-
width at half-maximum of 1200 μm resulting in an over-
lapped intensity of 2.8 × 1015 W=cm2.
The self-generated protons and x rays in the interpen-

etrating interaction region of the flows were imaged for
each target configuration to determine the location of yield
generation. The images were generated using a 1 mm
diameter pinhole located 260 mm from the interaction, with

CR39 positioned 1040 mm behind the pinholes backed
with a Fuji BAS-SR image plate. The CR39 detects protons
and is transparent to the x rays, which are in turn detected
by the image plate. An example x-ray image overlaid with
contours of the proton image is shown in Fig. 1(b). Even
though the x-ray image is dominated by emission near the
foil surfaces where the plasma is directly laser heated, the
central region where the two plasmas interact also shows
considerable brightening in x ray. A peak x-ray signal in the
interaction region of 8.1 photostimulated luminescence
(PSL) for the 6 mm case, 2.1 PSL for the 8 mm case,
and 0.8 PSL for the 10 mm case is observed and is an
indication of higher density and temperature in the 6 mm
case. Strikingly, the proton emission region is completely
dominated by the emission from the central region where
the two plasma flows interact. This, in combination with
the low single foil neutron yield, indicates the character-
istics of neutron and proton measurements provide infor-
mation about the interacting flows.
Neutron yield measurements integrated over time and

angle are shown in Fig. 2. A maximum yield of 5.3 × 1010

was observed for CD foils separated by 6 mm. A single foil
CD shot showed a yield of 4.7 × 108, indicating the neutron
yield for two foil experiments is dominated by the counter-
streaming plasma interaction. When one of the CD foils
was replaced with CH, the yield dropped by a factor ∼8 to
6.3 × 109. A factor of 2 difference in yield between CD-CD
and CD-CH is expected if a fully formed strong shock is
present, effectively isolating the deuterium to half the
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FIG. 1. (a) The experimental setup is shown for the double foil
configuration. (b) Measured single line of sight x-ray image and
proton image contours are shown for the 10 mm separation target.
The contour lines are 95%, 90%, 85%, and 80% of the imaged
self-generated proton yield.
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FIG. 2. The neutron yields from the interpenetrating plasma
flow interactions are shown for the CD-CD foils (solid red
circles) and the CD-CH foils (solid black squares). The measured
single foil neutron yield of 4.7 × 108 is subtracted from the total
measured yield (2× the single foil for CD-CD) to produce the
plasma interaction yields. The uncertainty in the yield measure-
ments is !15% and less than the size of the data points. The
simulated yield using HYDRA (open triangle) is shown for the
6 mm separation and the simulated yields using LSP are shown
for CD foils (red open circles) and CD-CH foils (black open
squares).
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