科学研究費助成事業

研究成果報告書

1版

平成 30 年 6 月 4 日現在

機関番号: 14401 研究種目:基盤研究(B)(一般) 研究期間:2015~2017 課題番号:15H03543 研究課題名(和文)高性能単分子熱電材料の創製

研究課題名(英文)Development of high-ZT single-molecule thermoelectric devices

研究代表者

筒井 真楠(Tsutsui, Makusu)

大阪大学・産業科学研究所・准教授

研究者番号:50546596

交付決定額(研究期間全体):(直接経費) 13,500,000 円

研究成果の概要(和文):本研究では、高熱電性能単分子接合の創製を目的とした。まず、電子線描画法等の微細加工技術を用いて、ナノ加工機械的破断接合(MCBJ)に熱電対を組み込んだ、1分子熱電特性測定用ナノセン サデバイスを開発した。このデバイスの動作実証として、金ナノ接合におけるジュール発熱を調べ、当該ナノ構造の電子状態を反映した非対称なジュール加熱効果を発見した。また、単分子接合の熱電特性における分子 電 極界面構造の寄与を調べ、金-チオール結合距離を拡張することで、単分子接合の熱電性能を大幅に向上できる ことを見出した。さらに、同デバイスを用いたアルカンジチオール単分子接合の1分子熱伝導度の実測にも成功 した。

研究成果の概要(英文): This research aimed to create single-molecule junctions with high thermoelectric performance. For this, a novel nanosensor was developed to measure the single-moelcule thermoelectric properties, which consisted of a microheater, micro-thermocouple, and Au nanobridge. The device was implemented to first evaluate heat dissipation in current-carrying Au ballistic nanocontact, wherein it was found that the local heating was bias-polarity-dependent due to the intimate contributions of the Peltier effects in the electron-hole asymmetric nanosystem. The technique was also exploited to characterize the role of metal-molecule contact structure on the thermoelectric performance, which led to findings that elongated Au-thiol bonds provide electronic structure useful for enhancing the single-molecule power factor. Finally, it led to a new method to measure single-molecule thermal conductance at room temperature in vacuum.

研究分野:ナノ・マイクロ科学

キーワード: 分子エレクトロニクス 熱電 単分子科学 ナノコンタクト 量子効果

1. 研究開始当初の背景

熱電効果を利用した熱電発電は、直接的に 熱エネルギーを電気エネルギーに変換でき るため、理想的なクリーンエネルギーのひと つと考えられている。熱電発電の実用化にお ける最も大きな課題は、そのエネルギー変換 効率の向上であり、熱電発電モジュールの産 業利用には、無次元性能指数 $ZT(=oS^{T}\pi ;$ $T: = F / (T < S^{T})$ ($= oS^{T}\pi ;$ $T: = T / (T < S^{T})$) が3を超える 熱電材料が必要となる(C.B. Vining, Nature Mat. 8, 83 (2009))。しかし、これまでの// ク材料開発では未だ十分に高い特性が得ら れていない (Vineis, C.J. et al. Adv. Mat. 22, 3970 (2010))。

そこで本研究では、電極/単一分子/電極 構造(単一分子接合)を基盤とする熱電素子 を創製し、その熱電性能評価を通して単分子 熱電材料の有用性を実証する(次頁 図 2)。 単一分子接合の電子構造は、電極フェルミ準 位 E_F と、架橋分子の最高被占軌道(HOMO) 及び最低空軌道(LUMO)で規定され、量子 閉じ込め効果(Hicks, L. D.; Dresselhaus, M. S. *Phys. Rev. B* 47, 12727(1993)) と 同様に、その HOMO や LUMO 近傍に生じ る電子状態密度の急峻な立ち上がりを利用 することで、高いゼーベック係数が得られる (図 1)。この事実は、ビピリジンなどの π 共役系分子について実証されている

(Widawsky, J. R. et al. Nano Lett. 12, 354 (2012))。また、高いゼーベック係数が得られ る条件下において、HOMO あるいは LUMO 近傍での状態密度が大きくなる分子接合設 計を採用することで、高い電気伝導率を同時 に達成することも原理上可能である。よって、 単一分子接合の分子軌道レベルと分子ー電 極接合界面設計の最適化により、パワーファ クター(=oS²)の大幅な向上を実現するこ とができると考えられる。実際に、この単一 分子接合に特有の電気特性により、ZT > 10 という極めて高い熱電性能指数が達成でき る可能性が理論的に示唆されている(Finch、 C. M. et al. *Phys. Rev. B* 79, 033405 (2009)) しかし、その一方で、実験的には単一分子接 合の ZT 評価すら実現できておらず、単分子 熱電材料の有用性は未だ検証されていない のが現状である。

2. 研究の目的

本研究では、申請者が独自に確立してきた 単分子接合作製技術を応用し、マイクロ熱電 対組込み型ナノ加工ブレークジャンクショ ン素子を用いた1分子熱電性能評価法を創成 する。この新規1分子熱電性能評価法と、申 請者の単分子技術を融合させることで、単分 子熱電材料が潜在的に有する高い熱電特性 を実証する(図1)。

研究の方法

本研究では、マイクロ熱電対を組み込んだ

図 1. 単分子熱電素子の模式図。量子効果を反映した単 分子接合特有の電子構造(左下)及び接合界面特性(右 下)により、高い熱電特性が達成できる。

マイクロヒーター搭載ナノ加工ブレークジ ャンクション構造を応用し、1 分子熱電性能 評価を実施すると共に、単分子接合が潜在的 に有する高い熱電性能を実証する(図 2)。そ のために、まずナノ加工プロセスフローの設 計並びに熱電特性測定のための実験系を立 ち上げる。そしてこれを用いて、単分子接合 の ZT 評価を行い、さらに第一原理計算の観 点から、電極/単分子/電極構造における 熱・電気輸送機構を明らかにする。また、そ こで得られる知見をもとに、高 ZT単分子熱 電材料に資する分子・界面設計を明らかにす る。

図 2.1 分子熱電性能評価デバイス技術の応用により達成 する高性能単分子熱電材料の創製。ナノ加工ブレークジャ ンクション素子構造を基本とする1分子熱電性能評価用デ バイスを用いて単一分子接合の熱電特性測定を実施し、 その熱電性能を明らかにしながら、高 ZT1 分子熱電材料 に資する分子設計及び分子 - 電極界面構造設計を明ら かにする。

4. 研究成果

これまでのマイクロヒータ組込み型ナノ 加工ブレークジャンクション素子の設計改 良を施し、当該素子にマイクロ熱電対を組み 込んだ新規ナノセンサデバイスを開発した (図 3)。その動作実証として、金ナノ接合に おけるジュール熱評価を室温下で実施した。 その結果、ナノ接合に生じるジュール熱は、 接合の大きさによらず入力電力に概ね正比 例することが確認された。また、通電時にお いて、印加電圧の極性に応じた非対称なナノ 接合の局所温度変化を観測した。この時、電 流の下流側においてより顕著な温度上昇が 現れた。これは、負のゼーベック係数を有す る金ナノ接合におけるペルチェ効果に起因 した現象であると解釈できる。以上のように、 熱電対組込み型ナノ加工ブレークジャンク ション素子の動作実証に成功すると共に、金 ナノ接合における熱電効果を反映したユニ ークな熱散逸機構を発見することができた。

当該素子を用いて、単一分子接合における 熱電特性の分子ー電極界面構造敏感性を室 温・真空中で調べた。その結果、チオール末 端基を有する有機低分子が金電極間に架橋 した構造の場合、接合引っ張り過程において 1分子ゼーベック係数が一桁以上向上する傾 向が観測された。この時、電気伝導度も同時 に増大し、これらの効果によりパワーファク ターが平均的な 1 分子熱電特性に比して 1000 倍以上向上した。一方、末端基がアミ ノ基の分子では、接合引張による熱電性能の 向上は確認されなかったことから、この現象 は金ーチオール結合で構成される単一分子 絵都合において特徴的なものであることが 分かった。そこで、密度汎関数法による分子 接合の引張変形過程における形状変化の計 算を実施したところ、当該熱電特性の変化は、 金ーチオール間結合距離の拡張に起因して いるものであることが示唆された。以上の結 果により、高 ZT1 分子熱電素子に資する分子 - 電極接合構造設計指針を明らかにした。

さらに、熱電対組込み型 MCBJ 素子を用い て金単原子接合及びアルカンジチオール単 分子接合の熱伝導度測定を実施した。金原子 サイズ接合においては、接合熱伝導度が電気 コンダクタンスに正比例して変化する傾向

図3. 熱電対組込み型 MCBJ 素子の操作電子顕微鏡像. 金ナノブリッジの両脇に,マイクロヒータとマイクロ熱電対 が組み込まれている.

が観測された。これは、金細線が原子サイズ にまで狭窄された構造になっても、バルク材 と同様に、その熱・電気輸送特性は Wiedemann-Franz 則に従うことを示した結 果である。一方、アルカンジチオール単分子 接合では、電気伝導度が金単原子接点に比し て数桁小さいことから、電子による熱伝導の 寄与は小さく、分子振動による熱輸送が支配 的となる。これに応じ、接合熱伝導度は金単 原子接合よりも数桁小さい値が観測され、そ の値は数十pW/Kレベルであった。以上のよ うに、世界初となる1分子熱伝導度計測に成 功した。今後、当該測定技術と1分子熱電素 子設計指針が広く応用され、高 ZT 熱電モジ ュールの創製へと昇華することを期待して いる。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計6件)

- <u>M. Tsutsui</u>, T. Morikawa, Y. He, A. Arima, M. Taniguchi, Scientific Reports, 5, 11519 (2015).
- M. Tsutsui, K. Yokota, T. Morikawa, M. Taniguchi, "Roles of vacuum tunneling and contact mechanics in single-molecule thermopower" 7, 44276 (2017).
- S. Tanimoto, <u>M. Tsutsui</u>, K. Yokota, M. Taniguchi," Dipole effects on the formation of molecular junctions" Nanoscale Horizons, 1, 399-406 (2016).
- T. Morikawa, K. Yokota, <u>M. Tsutsui</u>, M. Taniguchi," Fast and low-noise tunneling current measurements for single-molecule detections in electrolyte solution using insulator-protected nanoelectrodes" Nanoscale, 9, 4076-7081 (2017).
- 5. Y. -H. Kim, H. S. Kim, J. Lee, <u>M.</u> <u>Tsutsui</u>, T. Kawai, "Stretchinginduced conductance variations as fingerprints of contact configurations in single-molecule junctions" Journal of the American Chemical Society, 139, 8286-8294 (2017).
- 6. <u>M. Tsutsui</u>, K. Yokota, M. Taniguchi," Remote heat dissipation in atom-sized contacts" Scientific Reports, accepted.

〔学会発表〕(計7件)

 <u>M. Tsutsui</u>, "Measuring thermoelectric and heat transport in atomic and molecular junctions", Binational Japanese-German Workshop Single-Molecule Science and Technology (招待講演), Germany (2017).

- <u>筒井真楠</u>,"単分子熱電計測",第二回東 工大応用化学系次世代を担う若手シンポ ジウム(招待講演),東工大(2018 年)
- M. Tsutsui, T. Morikawa, K. Yokota, M. Taniguchi, "Heat dissipation and transport in atom-sized junctions", 2017 MRS Fall Meeting (2017 年)
- 谷本幸枝, 森川高典, 横田一道, <u>筒井真楠</u>, 谷口正輝, "単分子接合の形成機構"日本化学会第 97 春季年会, 慶應義塾大学 (2017年3月18日).
- 5. 谷本幸枝,"絶縁被覆 MCBJ 素子を用いた 単分子電流計測"第4回ナノスケール分 子デバイス若手セミナー,化学会館ホー ル(2017年3月30日).
- 6. <u>筒井真楠</u>, "単一原子・分子接合における 熱電現象"日本化学会(招待講演),同志 社大学京田辺キャンパス(2016年3月27 日).
- 森川高典, <u>筒井真楠</u>, 谷口正輝, "Au-PCBM 分子接合の電気伝導度と熱起電力同時計 測"応用物理学会,名古屋国際展示場 (2015年9月15日).

〔図書〕(計0件)

〔産業財産権〕

○出願状況(計0件)

○取得状況(計0件)

〔その他〕 ホームページ等

6.研究組織
(1)研究代表者
筒井 真楠 (TSUTSUI, Makusu)
大阪大学・産業科学研究所・准教授
研究者番号: 50546596

(2)研究分担者

なし

(3)連携研究者 なし