科学研究費助成事業(基盤研究(S))研究進捗評価

課題番号	15H05733	研究期間	平成 2 7 (2015)年度 ~令和元(2019)年度
研究課題名	室化物半導体を用いた未開拓波長 量子カスケードレーザの研究	研究代表者 (所属・職) (命和2年3月現在)	平山 秀樹 (理化学研究所·開拓研究本部· 主任研究員)

【平成 30(2018)年度 研究進捗評価結果】

評価		評価基準		
	A+	当初目標を超える研究の進展があり、期待以上の成果が見込まれる		
	A	当初目標に向けて順調に研究が進展しており、期待どおりの成果が見込まれる		
	A-	当初目標に向けて概ね順調に研究が進展しており、一定の成果が見込まれるが、一部		
		に遅れ等が認められるため、今後努力が必要である		
0	В	当初目標に対して研究が遅れており、今後一層の努力が必要である		
	0	当初目標より研究が遅れ、研究成果が見込まれないため、研究経費の減額又は研究の		
	С	中止が適当である		

(意見等)

本研究は、窒化ガリウム(GaN)系へテロ構造材料の特異な性質を利用して、今まで実現されていない 周波数の電磁波を発振・放射する量子カスケードレーザを実現することを目的とするものである。本研究 課題は挑戦的であり、研究の成果は多くの産業に波及することが見込まれる。

これまでに発振特性の向上に有効な導波路構造設計、光利得の理論的検討など、要素課題の一部について進展が見られる。

一方、研究の根幹を成す課題であるレーザ発振の実現については、確固たる科学的根拠を提示するまで に至っていない。研究資源の集中、連携の強化により、研究が速やかに次の段階に進むことを期待する。

【令和 2 (2020)年度 検証結果】

検証結果	当初目標に対し、十分ではなかったが一応の成果があった。
	窒化ガリウム(GaN)系テラヘルツ帯(THz)量子カスケードレーザ(QCL)の実現を
В	目指した研究であり、第一原理に基づく厳密な光利得解析法を確立し、有効な導波路構造
	やリーク電流阻止構造を検討する等、種々の基礎的な研究成果が得られた。しかしながら、
	一連の研究を通してレーザ発振の可能性が高いと判断された、両面金属導波路構造を有す
	る GaN 系 THz-QCL の試作においては、結果的にレーザ発振を実現するには至らなかっ
	た。
	研究期間終了後も、得られた基礎研究の成果に基づき研究開発を継続し、GaN 系 THz-
	QCL が早期に実現されることを期待する。