科学研究費助成事業

平成 29 年

研究成果報告書

研究成果の概要(和文):新規CuInS2/CdSヘテロ構造ナノテトラポッドの合成に成功した。過渡吸収分光測定に よって、CuInS2相で生成した励起電子は、CdS相にも移動し、テトラポッド全体に渡って非局在化していること が明らかになった。シェル厚が異なるCdSeコア®CdSシェルナノ粒子を合成し、単一粒子発光測定を行ったとこ ろ、厚いシェルのナノ粒子ほど、バイエキシトンの輻射再結合確率が増加することを明らかにした。

研究成果の概要(英文):We synthesized CuInS2 (core) /CdS (arms) nanotetrapods. Transient absorption spectroscopy showed that excited electrons generated in CuInS2 core transfer to CdS arms, and delocalized at whole tetrapod structure. We also synthesized CdSe (core) @ CdS (shell) with various shell thickness. Single dot spectroscopy revealed that CdS@CdS with thicker shell has higher radiative recombination rate of biexcitons.

研究分野:コロイド界面化学

キーワード: ナノ粒子 半導体 ヘテロ接合 電荷分離 蛍光

1.研究開始当初の背景

持続可能な社会の発展のために次世代エ ネルギーの利用が不可欠であり、中でも地球 上に無尽蔵に降り注ぐ太陽光を利用するた めの研究が活発に行われている。特に太陽電 池や水分解光触媒が広く研究され、どちらも 太陽光を吸収し自由キャリアを生成する半 導体が利用される。自由キャリアをエネルギ ーとして外部に取り出すためには、励起電子 とホールを空間的に分離させる必要がある。 そのためには、半導体/半導体または半導体/ 金属のヘテロ接合を形成させ、ポテンシャル 勾配を発生させて自由キャリアの分離を促 す必要がある。光エネルギー変換素子の作製 には蒸着などの真空プロセスが用いられて いるが、より省エネルギーな製造法として、 液相合成されたナノ粒子を用いる湿式法が 注目されている。溶液プロセスで合成された、 異なる半導体同士をヘテロ接合させたナノ 粒子は、粒子内での効率的な電荷移動特性を もたせることで、湿式プロセスによる光エネ ルギー変換デバイスのためのビルディング ブロックとして期待されており、選択的に合 成する手法の開発と、粒子内でのキャリアダ イナミクスの解明が重要である。

2.研究の目的

異なる半導体同士を粒子内で接合させた 半導体ヘテロ構造ナノ粒子の選択的合成法 を確立し、そのキャリアダイナミクスを測定 することで、光エネルギー変換デバイスのた めのビルディングブロックとしての性能を 評価する。また、それらのヘテロ構造ナノ粒 子の配列制御を行うことで、キャリアの流れ る方向をそろえ、光エネルギー変換効率を向 上させることを最終的な目的とする。

3.研究の方法

異なる半導体同士を接合させたヘテロ構 造ナノ粒子を合成し、光吸収により生成した キャリアの挙動について種々の分光測定に よって評価した。具体的には、長波長光励起 による電荷分離状態の形成を指向して、液相 合成法を用いて CuInS₂ ナノ粒子から異方的 な CdS ナノロッドを成長させて CuInS₂/CdS ヘテロ構造ナノテトラポッドの合成を試み た。種々の波長のポンプ光を使用した過渡吸 収分光測定により、ナノ粒子内の励起電子の 挙動を追跡した。また、異なる体積比をもつ ヘテロ構造ナノ粒子内のバイエキシトンの 挙動を明らかにするために、種々のシェル厚 をもつ CdSe@CdS コアシェルナノ粒子の化 学的液相法による合成と、単一粒子分光測定 を行った。

4.研究成果

CuInS₂/CdS ヘテロ構造ナノテトラポッドの合成と電荷分離特性

カルコパイライト型の結晶構造を有する CuInS₂は約 1.5 eV のバンドギャップをもち、 太陽光を効率よく吸収する半導体として有 用である。長波長の光励起による電荷分離状 態の形成を指向し、CuInS2ナノ粒子をコアと して、ロッド上のCdSアームを成長させるこ とにより、CuInS2/CdS ヘテロ構造ナノテトラ ポッドの合成を行った(図1a)。

コアの CuInS₂ ナノ粒子は、Cu(acac)₂、 In(acac)₃、オレイルアミンの o-ジクロロベン ゼン溶液を加熱したところに、硫黄の o-ジク ロロベンゼン溶液を注入し、しばらく加熱す ることで合成した。CdS アームの成長は、CdO、 トリオクチルホスフィンオキシド、トリオク チルホスフィン、オクタデシルホスホン酸、 ヘキサデシルホスホン酸の混合溶液を加熱 したところに、先に合成した CuInS₂ナノ粒子 と硫黄のトリオクチルホスフィンの溶液を 注入して行った。反応後に精製を行い、 CuInS₂/CdS ヘテロ構造ナノテトラポッドを 得た。

高分解能 STEM 観察により、カルコパイラ イト型 CuInS₂ コアの(-1-1-2)面とウルツ鉱型 CdS の(001)面が接合していることが分かっ た(図 1b)。また、ホスホン酸配位子の影響 により、ウルツ鉱型 CdS の(001)面以外の成長 が著しく抑制され、(001)方向の成長が優位に なったことで、CdS がロッド状に成長した。 さらに、カルコパイライト型 CuInS₂は(-1-1-2) 面と等価な面を四面体方向に4つ有してお り、それぞれから CdS ロッドが成長すること で、テトラポッド構造が選択的に得られたと 考えられる。

図 1. CuInS₂/CdS ナノテトラポッドの(a) TEM 像、(b) 高分解能 STEM 像、(c) 異なる時間に おける過渡吸収スペクトル(_{pump}= 650 nm) (d) 770 nm でのブリーチング寿命、(e)推定さ れるバンド構造の模式図。(f) CuInS₂/CdS/Rh ナノテトラポッドの TEM 像。

CuInS₂ コアを選択的に励起した後の過渡 吸収スペクトル(図1c)では、CuInS₂ コアと CdS アーム由来の吸収ブリーチングが同時に 生じたことから、CuInS₂ コアと CdS アームの 伝導帯下端の位置がほぼ同じである quasi-type II 型のヘテロ構造をもち、励起電子 がテトラポッド全体に非局在化しているこ とが示唆された(図1e)。

また、この電子の非局在化により、 CuInS₂/CdS ナノテトラポッドにおける電荷 分離寿命は、コアである CuInS₂ナノ粒子単独 の寿命の 330 倍もの長さがあることが分かっ た(図 1d)。このことを利用し、CdS では吸 収できない長波長(594 nm)の光照射によっ て、CdS アーム上で Rh ナノ粒子を光析出さ せ、CuInS₂/CdS/Rh ナノテトラポッドの合成 にも成功し、太陽光に多く含まれる波長領域 の光を効率よく利用できることを示した (図 1f)。CuInS₂/CdS ナノテトラポッドの有 する高い光捕集能、指向的な光誘起電荷分離、 電荷分離状態の長寿命化などの特長は光エ ネルギー変換に適しており、高効率光触媒へ の応用が期待される。

(2) 厚いシェルをもつ CdSe@CdS コアシェル ナノ粒子の発光特性

Cd カルコゲニドは安定で高品質な可視光 応答半導体として広く利用されている。我々 は CdS と CdTe の組み合わせのヘテロ構造ナ ノ粒子を選択に合成する方法を見出し、ナノ 粒子内で電荷分離状態が効率よく生成する ことを報告している (Saruyama *et al. J. Am. Chem. Soc.* 2011, 133, 17598.)。本研究では、 CdSe と CdS のヘテロ構造におけるキャリア ダイナミクスの解明を行った。具体的には、 約 3 nm の CdSe ナノ粒子に 10~33 層の CdS シェルを被覆した CdSe@CdS コアシェル型 ナノ粒子の光学特性について研究を行った。

コアの CdSe ナノ粒子(平均 3.2 nm)は、 オレイン酸 Cd、オクタデシルアミン、トリオ クチルホスフィンオキシドを加熱したとこ ろに、Se のトリオクチルホスフィン溶液を注 入することで合成した(図 2a)。CdS シェル 被覆は、加熱した CdSe コアナノ粒子のオク タデセン溶液に、オレイン酸 Cd、硫黄、トリ オクチルホスフィン、オクタデセンの混合溶 液をシリンジポンプでゆっくり(1 mL/h)と 注入することで行った。注入途中にシリンジ で少量ずつ回収することで、様々なシェル厚 をもつ CdSe@CdS コアシェルナノ粒子を得 た(図 2b-d)。

CdSe@CdS ナノ粒子は、CdSe 由来の強い 発光を示すことから、励起子は CdSe コアに 局在化することが示された。異なるシェル厚 をもつ CdSe@CdS ナノ粒子内でのバイエキ シトンの挙動を解明するために、単一粒子発 光測定を行ったところ、バイエキシトンとエ キシトンの輻射再結合確率の比 は、シェル が厚いほど大きくなった(図 2e)。これは、 より厚いシェルのナノ粒子では、2 つのホー ルがコア部で形成する大きなクーロンポテンシャルによって、バイエキシトンがコアに 強く局在化され、輻射再結合確率が増幅され たためと考えられる(図 2f)。

図 2. (a) CdSe コア、(b) CdSe@13 層 CdS、(c) CdSe@23 層 CdS、(d) CdSe@33 層 CdS コアシ ェルナノ粒子の TEM 像。(e) 値とシェル厚 の関係。(f) バンド構造とバイエキシトン分 布の模式図。

これらの知見は、半導体材料の種類だけで なく、各相の形状や体積などを考慮すること で、バンド構造やキャリアの波動関数分布の 精密な制御が可能であることを示し、高効率 な電荷分離または発光デバイスのビルディ ングブロックとして最適なナノ構造体の創 製につながると考えられる。

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 4 件)

- M. Sakamoto, K. Inoue, M. Okano, <u>M. Saruyama</u>, S. Kim, Y.-G. So, K. Kimoto, Y. Kanemitsu, and T. Teranishi, "Light-Stimulated Carrier Dynamics of CuInS₂/CdS Heterotetrapod Nanocrystals", *Nanoscale* 2016, *8*, 9517-9520.
- <u>猿山雅亮</u>、坂本雅典、寺西利治、「半導体 ヘテロ構造ナノ粒子のキャリアダイナミ クス」、光化学、2017、47、145-151.
- N. Hiroshige, T. Ihara, <u>M. Saruyama</u>, T. Teranishi, and Y. Kanemitsu, "Coulomb-Enhanced Radiative Recombination of Biexcitons in Single Giant-Shell CdSe/CdS Core/Shell Nanocrystals", *J. Phys. Chem. Lett.* 2017, 8, 1413-1418.
- N. Yarita, H. Tahara, T. Ihara, T. Kawawaki, R. Sato, <u>M. Saruyama</u>, T. Teranishi, and Y.

Kanemitsu, "Dynamics of Charged Excitons and Biexcitons in CsPbBr₃ Perovskite Nanocrystals Revealed by Femtosecond Transient-absorption and Single-dot Luminescence Spectroscopy", *J. Phys. Chem. Lett.* **2017**, *8*, 1961-1966.

[学会発表](計 10 件)

- 1. <u>M. Saruyama</u>, M. Sakamoto, T. Teranishi, "Transformation of CdS nanocrystals into CdS/CdTe heterodimers through the partial anion exchange reaction", ICCST-13, 2016/5/26, Nagaragwa Convention Center.
- M. Sakamoto, M. Okano, <u>M. Saruyama</u>, Y. Kanemitsu, T. Teranishi, Investigation on Light-stimulated Carrier Dynamics in CdS/CdTe Nanopencils, ICCST-13, 2016/5/26, Nagaragawa Convention Center.
- N. Hiroshige, T. Ihara, <u>M. Saruyama</u>, T. Teranishi, Y. Kanemitsu, "Enhancement of Biexciton Emission in Giant CdSe/CdS Nanocrystals Revealed by Single dot Spectroscopy Implication for Light-emitting Device Efficiencies, 2016 MRS Fall meeting, 2016/11/27, Boston, USA.
- 広重直、井原章之、<u>猿山雅亮</u>、寺西利治、 金光義彦、「単一 CdSe/CdS ナノ粒子の励 起子分子発光:クーロン相互作用による 増強」、第64回応用物理学会春季学術講 演会、2017/3/15、パシフィコ横浜
- 広重直、井原章之、<u>猿山雅亮</u>、寺西利治、 金光義彦、単一 CdSe/CdS ナノ粒子にお けるカスケード発光:クーロン相互作用 による励起子分子発光増大」日本物理学 会 2016 年秋季年会、2017/9/15、金沢大学
- 6. 鎗田直樹、田原弘量、井原章之、川脇徳 久、佐藤良太、<u>猿山雅亮</u>、寺西利治、金 光義彦、「CsPbBr₃ペロプスカイトナノ粒 子の作製と光学特性」、第77回応用物理 学会秋季学術講演会、2016/9/15、朱雀メ ッセ
- 36田直樹、田原弘量、井原章之、川脇徳 久、佐藤良太、<u>猿山雅亮</u>、寺西利治、金 光義彦、「CsPbBr₃ペロブスカイトナノ粒 子の高速光学応答:バイエキシトンとト リオン」、第 64 回応用物理学会春季学術 講演会、2017/3/15、パシフィコ横浜
- <u>猿山雅亮</u>、坂本雅典、秋山誠治、山田太郎、堂免一成、寺西利治、「酸素生成用リン化ニッケル@酸化鉄ナノ粒子の合成」、第26回日本 MRS 年次大会、2016/12/20、横浜開港記念会館
- <u>猿山雅亮</u>、坂本雅典、秋山誠治、山田太郎、堂免一成、寺西利治、「遷移金属リン化物ベースコア@シェルナノ粒子の合成と酸素生成触媒活性」、日本化学会第97春季年会、2017/3/17、慶応大学
- 10. 水野弘樹、<u>猿山雅亮</u>、寺西利治、「Synthesis

of Cs₄PbBr₆ Perovskite Nanorods 1 2017/3/17、日本化学会第 97 春季年会、慶 応大学 〔図書〕(計 0 件) 〔産業財産権〕 出願状況(計 0 件) 名称: 発明者: 権利者: 種類: 番号: 出願年月日: 国内外の別: 取得状況(計 0 件) 名称: 発明者: 権利者: 種類: 番号: 出願年月日: 国内外の別: [その他] ホームページ等 http://www.scl.kyoto-u.ac.jp/~teranisi/ 6.研究組織 (1)研究代表者 猿山 雅亮 (SARUYAMA, Masaki) 京都大学・化学研究所・特定助教 研究者番号:50636628 (2)研究分担者 (3)連携研究者 (4)研究協力者 ()