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We have two major achievements throughout the period of this research.
Additionally, this project has inspired us to solve another important related problem.
(1) We successfully developed a posterior ratio estimator and it was shown excellent performance on
either synthetic or real dataset.(2) A generic theoretical analysis was made for density ratio
estimation Broblems. We investigated the theoretical property of the density ratio estimator for
general problems. (3) (Additional) A novel method was proposed for discovering the sparse structure
of a partial Graphical Model.
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Transfer learning has always been an
important topic in Machine Learning
community in the last decades. The idea of
using the data from a “source task” to help
a similar target task is very natural and
practical (Raina et al., 2006). Some of the
previous works assume two different tasks
share one similar parametric model and
propose techniques to guarantee such a
similarity is enforced. Another approach is
directly reusing the source dataset to help
the learning of a target task. A set of weights
are also computed to “reweight” the samples
such that only the most “helpful” samples
are preserved and the harmful points are
removed (Sugiyama et al., 2007).

However, both frameworks have drawbacks.

(1) The model reuse technique is simple to
implement, but restrictive. To ensure
the similarity of two models, it is
required that two models are trained
simultaneously. As the learning and
modelling is so sophisticated nowadays
that for a smart device with limited
computational capacity, it i1s hard to
conduct such a transfer procedure
“onsite”.

(2) For the sample reweighting method, it
1s not required to store and compute two
complex models simultaneously, so
weights can be computed efficiently on a
smart mobile device. However, such a
method does not make use of the
similarity between models of two tasks,
which can be beneficial to the transfer
task.
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We hope to find an algorithm that can
improve the performance of embedded
Machine Learning algorithms when facing
an unfamiliar environment, using only
limited computational power.

Such an adjustment to fit the new
environment is done by a transfer learning
algorithm that can take the advantages of
model similarity and can be computed with
efficiency on small embedded devices.
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Figure 1 The idea of onsite transfer

In this research, we focus on classification
tasks in general, 1.e. the task is to predict a
discrete outcome (i.e. class labels) using
feature data. In probabilistic classification,
the task is to learn a class posterior
P(Class|Data) to make future predictions.

In this transfer learning setting, we assume
that an accurate predictive pattern
P;, 1.e. P;(Class | Data)

has been obtained by using dataset D,. The
natural idea of the onsite adaptation is to
learn a ratio between two class posteriors

P, (Class|Data)/P; (Class |Data),
where P, is the predictive pattern of onsite
dataset D, , and multiply it with P; .
Therefore, the central issue in this research
1s how to estimate such a ratio accurately
and efficiently, wusing only onsite
information P, and D, alone.

To be precise, Machine Learning experts
may utilize enough data in D; to create a
predictive pattern, a good classifier P; in
laboratory. However, during the transfer
phase, our algorithm tries to adapt and
learn a new probabilistic classifier P, using
onsite information that is no more than D,
and P, . This is a challenging problem.
During the research period, we slight
change the setting which allows a small
proportion of samples from D; to be
included.

Through a simple intuitive analysis, we can
see that separately estimate the P, and P,
and then take the ratio between them would
not be a logical choice since

@D If one can already obtain an accurate
estimate of P,, there is no need to
transfer;

@ Given sample size of D, is usually
much smaller than that of D;, P,
obtained by such a procedure is likely
too poor to be used.

Therefore, in this research, we plan to use
the density ratio estimation criterion to
directly estimate the ratio between
probabilities.



Since the nature of this research is both
theoretical and practical, we divide the
entire research scheme into two parts:

(1) Developing the estimator of the
posterior ratio, and validate it using
empirical experiments.

(2) Conducting theoretical analysis
showing the proposed ratio estimator
have good performance when two tasks
are similar.

4. BFZERR

We have two major achievements
throughout the period of this research.
Additionally, this project has inspired us to
solve another important related problem.
All three projects have now been published.

(1) We successfully develop a posterior ratio
estimator for P,/P; and it has shown
excellent performance on either
synthetic or real dataset.

In this work, we tackle the problem of
estimating the ratio between two
conditional probability, 1.e.,
P,(Class|Data) /P, (Class|Data).

An estimator is proposed that makes
use of the sample from the target task
and a small proportion of the source
task data that is the “most similar” to
the target dataset.

The ratio function is modelled using a
log-linear model, and the learning
criteria is a simple maximum likelihood
estimation (MLE). However, we
normalize our model using samples
from the source task dataset so that the
ratio function will be suppressed at the
locations where P; is high. This is a
slight deviation from our original plan
as we hoped to estimate P,/P; without
using any direct information from D,
which is usually in huge volume and
hard to fit into the memory of a mobile
device.

However, in the proposed estimator, it is
not required to carry over the entire
source dataset, but only the samples
that are directly related to the target
problem. In fact, using the k-nearest
neighbor selection criterion, we only
need to prepare kn, samples from D,
where n, is the number of samples in
D, and k is also a small scalar. The
computational  overhead is  still
manageable.
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Figure 2 The classification error of
various transfer learning methods. The
proposed method (Red) achieve the
lowest classification error rate.
Experiments were performed on various
synthetic and real datasets. Here we
only shown an example. In this
experiment, we compare the proposed
transfer learning method with a few
other existing transfer learning
methods using Amazon Sentiment
dataset, where the task is using the
comments of some categories with many
customer feedbacks to help the
classification of users’ sentiment of a
category with only a small number of
feedbacks.

In Figure 2, we plot the classification
error rate of the “Kitchen” category
using the customers’ feedback from
“DVD”, “Books” and “Electronics”. It can
be seen from the plot that the proposed
method achieves the lowest
classification error rate.

The proposed research also inspired us
to investigate the theoretical property of
the density ratio estimator in general.

In this work, we consider a generalized
joint density ratio estimator. We argued
that estimating the ratio of two
densities is easier than estimating P,
and P, separately. However, can we
justify this intuition rigorously?

As we mentioned, the framework of
transfer learning assumes that the
models of source and target task are
“similar” to each other. Thus, it is
sensible to also assume, the difference
between two parameters, which
determines the behaviors of P,/P,, is
sparse.

We investigate the sufficient conditions
for a ratio estimation to “successfully”
recover the sparse structure of the
parameter and the major discovery is
that the number of samples needed for
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such a successful sparsity recovery
depends only on the sparsity pattern of
the differential parameter, rather than
the sparsity of density parameters of P;
and P, individually. It means even if we
have P, and P, which are highly
complex, if P; and P, are “similar” to
each other in the sense that the
difference between  two model
parameters is sparse, we are
guaranteed to have a good density ratio
estimation performance with only a few
samples.

Such a discovery guided an experiment
of learning a density ratio over two high
dimensional datasets with only small
number of samples. The sparsity
pattern of the ratio parameter reveals
the changes between two complex gene
networks (See Figure 3).
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Figure 3 The differential model learned
between two gene networks.

Here the gene profiling data are
sampled under two different external
environments. The “FOSB” gene is a
known regulator that controls the
expression of other genes and it is
switched on and off given different
external stimuli. The density ratio
estimator can discover such an
important regulator gene without any
prior knowledge.

A novel method was proposed for
discovering the sparse structure of a
partial Graphical Model.

We have shown that if P, and P; are
similar, then density ratio estimation
can be very efficient. It opens a door of
learning the partial pattern of P, even
if we do not have enough samples to
infer the complete pattern of P,.

We can create a synthetic dataset of P,
which has a “similar model” comparing
to the original P,. The simplest case is
that if we have P,(X,Y), where X and
Y are multivariate random variables.
It is easy to create another
distribution P, := P,(X)P,(Y) through

marginalization. We show that such a
distribution preserves all possible
interactions within X and Y while
removing all interactions between X
and Y.

By comparing P, with P,, we can
discover the interactions between X
and Y while  the  “synthetic
distribution” P, serves as a “mask” to
highlight the differences between two
distributions.

We perform the partial graphical mode
learning on the recorded U.S. Senate
voting data and the generated partial
graphical model identifies the
bipartisanship in the U.S. Senate. See
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Figure 4 The partial graphical model learned

from US senate voting record.
Figure 4.

It can be seen from Figure 4 that one of
the conservative democrats “Ben Nelson’
1s identified as the “hub” which links to
multiple republican senators. It is
noteworthy that our method also
identifies a group of senators that
constantly vote against each other
(marked with blue links).
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