科学研究費助成事業

研究成果報告書

平成 30 年 6 月 18 日現在

機関番号: 82718
研究種目: 基盤研究(C)(一般)
研究期間: 2015 ~ 2017
課題番号: 1 5 K 0 5 2 5 8
研究課題名(和文)剪断流動下におけるPICの過渡的ネットワーク形成機構の解明
研究課題名(英文)Study of gelation mechanism in aqueous solutions of PIC under shear flow
研究代表者
) 注留崎 恭一(Tsurusaki Kvoichi)
地方独立行政法人神奈川県立産業技術総合研究所・化学技術部・主任研究員

研究者番号:90426388

交付決定額(研究期間全体):(直接経費) 3,700,000 円

研究成果の概要(和文):剪断流で過渡ゲル化するポリイオンコンプレックス水溶液を、実験と理論の両面から 検討した。臨界剪断速度gc及び粘度上昇開始時間11のポリカチオン分子量依存性を調べたところ、gcは上に凸、 11は下に凸の関数、つまりゲル化を起こす最適分子量があることが分かった。静置後に起こるゲル崩壊は、本課 題で作成したレオオプティクスによって初めて観測に成功し、短長2段階の緩和過程で起こることが分かった。 ダイナミクスを表す反応速度式を構築し、gcやゲル崩壊の時間依存性など実験結果と一致する解析解が得られ た。また、ランダムポリイオンに対応する過渡的ネットワーク理論を構築し、gcをポリイオン濃度や温度の関数 として求めた。

研究成果の概要(英文):We investigated specific polyion complex aqueous solutions that gel transiently by shear flow from both experimental and theoretical approaches. The critical shear rate gc and the induction time tl are convex and concave as a function of the molecular weight of polycation, MC, respectively. This result means that an appropriate value will exit in MC for gelation mechanism. By using the rheo-optical measurement, we found that the collapse process of transient networks when the shear flow stops occurs in two dynamics with fast and slow time scales. We proposed a model based on reaction kinetics and obtained analytical solutions of gc and tl, which are consistent with the experimental results. We also proposed a theory of the transient network formation for random polyions and derived the dependence of gc on the polyion concentration and the temperature.

研究分野:高分子物性、非線形レオロジー

キーワード: 過渡的ゲル化 ポリイオンコンプレックス ダイラタンシー レオオプティクス 過渡的ネットワーク 理論 1. 研究開始当初の背景

(1)本多[研究協力者]は、ホモポリカチオン (PC)とアニオン基が数%ランダムに分布し たランダムポリアニオン(PA)を水に僅か 0.1wt%溶かしたポリイオンコンプレックス 水溶液が、静置時は水様だが、振ると急激に 粘度が上昇する(ここでは簡便にゲル化と呼 ぶ)「ダイラタンシー(Di)現象」を示すこ と発見した[特開 2010-018660、2010-095636] (図1.1)。以降、これを DiPIC と呼ぶ。津留 崎[研究代表者]と武田[連携研究者]は、DiPIC が学 術のみならず工業的にも重要と考え、発見当 初から本多と共同研究[H24-25 JST A-STEP FS シーズ 顕在化等]を行ってきた。

図 1.1 静置状態にある DiPIC(左) に剪断を 加えてゲル化した時の様子(右)。

(2) DiPICは、非常に興味深いレオロジー特性を示す。例えば、剪断速度gを高くした後に低くするループ試験において、DiPICは大きなヒステリシスを描く(図1.2)。g上昇開始当初はシェアシニングを示すが、ある特定の臨界値gcを超えた時に急激に粘度ηが上昇しゲル化する。その後、gを下げていくと、ゲル状態を保ったまま、g=0に到達する。

このゲル状態は過渡的であり、しばらく静 置すると元の低粘度状態に戻る。静置状態で は原理的に粘度が測れないため、これまでは 低粘度状態に戻る時間(戻り時間 ^α)を実験 的に知ることが出来なかった。

また、g が gc より少し高い時には、ゲル化 するまでに一定の待ち時間を要する。図 1.3 に g (>gc)を一定にした時の η の時間 t 変化 を示す。待ち時間の後に η が上昇を始め、 $t_{\rm f}$ で最大となる。 $t_{\rm f}$ は、g が gc に上から近づく につれて大きくなり (図 1.4)、g=gc では発 散する。実験で $t_{\rm f}$ の発散の振る舞いを知るこ とは、測定時間の制限から困難であるため、 理論的な予測が求められる。

図 1.2 剪断速度 g のヒステリシスループ。

図 1.3 g が gc より少し高いときの η の経過時 間 t 依存性。 η は、一定の待ち時間を経て $t_{\rm I}$ で最大値 $\eta_{\rm p}$ をとる。

図 1.4 t_fのg 依存性。図中の数字はgの値を 表す。g=650 (1/s)では、測定時間 1500 (s)内で Di を起こさない。

2. 研究の目的

本研究の目的は、DiPIC が示す興味深いレ オロジー特性を実験と理論の両面から解明 することである。

(1)ポリイオン組成を変えた DiPIC を作成し、
 分子設計によって、Di 性能を表す gc やα を
 どの程度制御できるかを知る。

(2) 剪断開始から待ち時間後に始まるネット ワーク形成、および静置後のネットワーク崩 壊を観測するため、粘度と光学観察を同時に 行う Rheo-Optics (RO) システムを構築する。 RO システムによるネットワーク形成のその 場観察を行うことによって、過渡的ネットワ ーク理論の知見とする。

(3) 理論的なアプローチとして、DiPIC に適応できる過渡的ネットワーク理論を構築し、 実験結果と対比する。これによって、Di性能を予測する技術へつなげる。

3. 研究の方法

(1) 試料作成

分子量の異なる PC と PA をそれぞれ 3 種 類ずつ用意し、0.2wt%で水に溶かした。これ ら PC と PA の 0.2wt%水溶液を重量比 1:4 で 混合して、合計 9 種類の DiPIC を作成した。

表<u>3.1</u>作成した分子量の異なる PC と PA。

表記名	PCs	PCm	PCI
分子量(万)	21	49	450
表記名	PAs	PAm	PAl

| 分子量(万) | 230 | 260 | 330 |

(2) **RO**システムの構築

既存設備である動的粘弾性測定装置(TA インスツルメントジャパン社製ARES-G2) にHe-Neレーザと光学機器を組み込んだRO システムを作成した(図3.1)。冶具は、石英 製の透明な平行板とクエットを自作した。

図 3.1 自作した RO システムの外観写真。図 中では石英製クエット冶具を用いている。

(3) 剪断流動開始からネットワーク形成に至る過程を詳細に追うため、反応速度論を DiPIC に応用した動的ネットワーク形成理論 を構築する。また、ゲル化の古典論である Flory-Stochmayer 理論をランダムポリアニ オンに適応できるように拡張する。

4. 研究成果

4.1 ネットワーク形成過程と臨界剪断速度 gc 作成した9種類の DiPIC について、以下の 手順に従って gc を見積もった。まず、図 1.2 と同様に g 走査を行い、 η が上昇した値を gc の上限値として定める。次に、この値より少 し低い一定のg下で、 η の時間変化を調べる。 測定時間 1500 (s)内で η が上昇すれば、さらに g を下げて η の時間変化を測定する。この過程 を繰り返して、最終的に 1500 (s)で粘度上昇 しない g を見つけ、gc とする。例えば、図 1.4 では g=650 (s) が gc となる。

9 種類の DiPIC の gc を表 4.1 に示す。PC と PA の組み合わせによって、gc は 5 (1/s) から 650 (1/s)まで変わる。ここで、gc の PC および PA 分子量依存性に言及する。gc は、 PA の分子量が高くなると単調減少している が、PC の分子量依存性は PAs と PAm 時に 極大値が存在している。水溶液中の PC 重量 分率は常に一定であるので、PC の分子量が 大きくなると、鎖長は長くなるがモル数は減 る。従って、PA 分子量が小さい時には、Di を起こすメカニズムが PC 分子量によって変 わる可能性を示唆している。

剪断流によって形成された過渡的ネット ワークの強さを見るために、 η_p の g 依存性を 調べる。例として、PCs に対する PA 依存性 と PAs に対する PC 依存性を図 4.1 と図 4.2 に 示す。PA、PC 共に分子量が大きいほど η_p が 高くなることから、ネットワークの強さはポ リイオンの鎖長で決まっているといえる。gc については、PC の分子量が高くなると極端 に小さくなることが大変興味深いが、現時点 ではこの理由は分かっていない。

表 4.1 3 種類の PC と 3 種類の PA を組み合わ せた 9 種類の DiPIC の臨界剪断速度 gc (1/s)。 PC と PA の分子量は、表 3.1 を参照。

	PAs	PAm	PAl		
PCs	600	290	50		
PCm	650	300	20		
PC1	230	120	5		

図 4.1 ηpの PA 分子量依存性。

粘度と光学測定を同時に行える RO システ ムを用いて剪断流動化におけるゲル化過程 を観察した。ここでは、冶具には SUS 製平 行板を用いた(図 4.3)。剪断速度は、臨界剪 断速度(gc=600 1/s)よりも少し高い値 (g=630 1/s)に設定した。

剪断を開始した時刻 $t \ge 0 \ge 0$ 、 η の時間 変化と t=40、55、80(s)のスナップショ ットを図 4.4 に示す。各スナップショットに 現れている上下の強い光は、冶具からの反射 によるものである。剪断開始からしばらくす ると小さな靄の様な構造が発生し、40(s)ま では η の上昇に伴ってそれが大きくなる様子 が観察された。 η が最大となる55(s)では靄 が系全体に広がり、定常粘度となる80(s) 以降ではこれが均一化した。このことから、 この靄は剪断流によって誘起されたネット ワーク構造に起因すると判断できる。

図 4.3 平行板冶具を用いた光学観察。差し 込み写真はゲル化前 DiPIC のスナップショッ トである。上下に見られる強い光は、平行板 からの反射による。

図 4.4 一定剪断流 (g=630 1/s) 時の粘度 η とモルフォロジーの時間変化。

4.2 ネットワーク崩壊過程と緩和時間で

剪断流停止直後と 10 分後のスナップショ ットを図 4.5 に示す.実際の動画では、剪断 停止直後にみられる系全体に広がった靄が 時間を経るにつれて徐々に消失していく様 子が観察できる。

図 4.5 剪断停止直後と停止 10 分後のモルフ オロジー変化。 図4.4及び図4.5の結果から粘度と光の散 乱量は相関すると仮定し、ゲル状態の戻り時 間 πを光の散乱量の半減時間によって見積も る。散乱強度を高めるため、冶具は大きな観 察領域をとれるクエットを用いた。

観測は、ボブの底面とカップの上面の間に 空けた4.5 mm 程度の隙間で行った(図4.6)。 ここは、ボブが回転したときに均一剪断流に はならない。しかしながら、αを知るにはゲ ル状態を静置すればよいので、剪断の均一性 は大きな問題とはならない。この為、観察場 所として大きな面積が取れるクエットの隙 間部を選択した。

図 4.6 rs を測定する際に用いたクエット。 *τ*rは、Ti 製ボブとガラス製カップの隙間部の レーザ光の散乱量で求めた。

図 4.4 の様なスナップショットの画像解析 から散乱光の強度 *I*を求めた。*I*が時間経過 で減衰する様子を図 4.7 に示す。強度はすべ て初期値 *t*=0 で規格化してある。

Iは、初期に一度速やかに減少した後に、 ゆっくりと減少する2段階の緩和をしてい るように見える。表4.2には、短い緩和時間 を9種類のDiPICについて示す。臨界剪断速 度gcとは反対にPCmで極小になっている。

図 4.7 ゲル化した DiPIC を静置したときの 散乱光の強度 *I*の時間変化。

表 4.2 短緩和モードにおける緩和時間 τs (s)。

	PAs	PAm	PAl
PCs	4.4	6.2	16.4
PCm	0.2	2.8	16.1
PCl	1.8	3.7	79.0

4.3 過渡的ゲル化の反応速度理論

図 4.8 ポリイオンが移り変わる3状態。

DiPIC が示す過渡的ゲル化を表す理論を構築した。ポリイオンは、①会合状態、②乖離状態、③ネットワーク状態のいずれかにあり、それぞれの状態は反応速度式に従って遷移すると仮定する(図4.8参照)。

①、②、③にあるポリイオンの数密度をそれぞれ ϕ_1 、 ϕ_2 、 ϕ_3 とし、すべての状態数の合計は一定 ($\phi_1+\phi_2+\phi_3=\text{const.}$)とする。

また、i 状態の数密度 ϕ i が単位時間に増え る個数 $d\phi_i$ は、単位時間にjからiに移る遷移 確率 $P_{j,i}$ で決まるとする。中間の②を経ずに ①から③、あるいは③から①に移らないとす れば、次の方程式が成り立つ。

ここで、DiPIC の実験から得られた知見を もとにした P_{ii} に関する仮定をおく。

I. 会合を乖離するには、剪断速度 g が g_1 以上にならないといけない、つまり $g < g_1$ では $P_{12}=0$ となる。また、 $g \ge g_1$ では P_{12} は g に比 例する。

Ⅱ. ②の数*6*が*6*以下ではネットワークがつ くられない。

Ⅲ. NW は、熱揺らぎの他、歪が破断歪 κ₃になると壊される。

これらの仮定の下に P₁₂, P₂₃, P₃₂, P₂₁を以下の様に設定する。

$$P_{12} = p_{12} (g - g_1) \phi_1$$

$$P_{23} = p_{23} H (\phi_2 - \phi_2) \phi_2$$

$$P_{32} = p_{32} (a + H(g(t - t_2) - \kappa_3) \phi_3$$

$$P_{21} = p_{21} \phi_2$$
(1)

H(x)は、Heaviside の階段関数である。aは熱揺らぎの効果、 t_2 は ϕ が ϕ_2 になる時間である。 β は、剪断歪を無次元化した量で β =(g- g_1)/gcと定義する。

(1)を基に反応速度式を書き下すことで (2)を得る。(2)は、線形方程式なので初期条 件が与えられれば、解析的に解ける。

$$\frac{d\phi_{1}}{dt} = p_{21}\phi_{2} - p_{12}\beta H(g - g_{1})\phi_{1}$$

$$\frac{d\phi_{2}}{dt} = -p_{21}\phi_{2} + p_{12}\beta H(g - g_{1})\phi_{1}$$

$$- p_{23}H(\phi_{2} - \phi_{2})\phi_{2} \qquad (2)$$

$$+ p_{32}\left(a + H\left(g \times (t - t_{2}) - \kappa_{3}\right)\right)\phi_{3}$$

$$\frac{d\phi_{3}}{dt} = p_{23}H(\phi_{2} - \phi_{2})\phi_{2}$$

$$- p_{32}\left(a + H\left(g \times (t - t_{2}) - \kappa_{3}\right)\right)\phi_{3}$$

ネットワーク形成過程 (g > gc) 初期条件 $\phi_1=1, \phi_2=\phi_3=0$ の下で ϕ_1 の時間 t依存性と t_1 は次のように与えられる。

$$\phi_{1} = \frac{1}{(p_{21} + p_{12}\beta)} \Big[(p_{12}\beta) \exp(-(p_{21} + p_{12}\beta)t) + p_{21} \Big]$$
$$t_{2} = -\frac{1}{(p_{21} + p_{12}\beta)} \ln \Big[1 - \frac{\hat{\phi}_{2}(p_{21} + p_{12}\beta)}{p_{12}\beta} \Big]$$

gcは、t2が発散する点によって求められる。

$$gc = g_1 \left(\frac{(1 - \hat{\phi}_2)}{(1 - \hat{\phi}_2) - \hat{\phi}_2 \chi} \right), \ \chi = p_{21} / p_{12}$$

g が *gc* に近いとすれば (*g*/*gc*=1+*ε*, *e*<<1)、*t*₂ は臨界点近くで対数発散することが分かる。

$$t_2 = -\frac{1}{p_{12}(\chi + \beta_c)} \ln \left[\frac{\varepsilon}{\beta_c} \right]$$

図 4.9 に、粘度に関係する③状態の濃度時 間依存性を Mathematica で解いた結果を示す。 実験的にも、 *o*₃と類似の振る舞いは観測され ている(図 4.4 参照)。

図 4.9 ①会合状態に剪断を加えた時の � の時間依存性。実験(図 4.4 参照)の振る舞いが定性的に再現されている。

ネットワーク崩壊過程(g=0)) 剪断停止直後から始まるネットワーク崩 壊について**の**の解析解を示す。

$$\phi_3(t) = C_2 \exp(-(\kappa + \delta)t) + C_3 \exp(-(\kappa - \delta)t)$$

$$\kappa = \frac{1}{2} (p_{21} + p_{23} + ap_{32})$$
$$\delta = \frac{1}{2} \sqrt{-4ap_{21}p_{32} + (p_{21} + p_{23} + ap_{32})^2}$$

である。

実験(図 4.7 参照)における長短 2 段階緩 和を示すことが理論的にも確認することが 出来た。 Mathematica によって数値的に解くと図 4.10となり、図4.7の振る舞いが少なくても 定性的に再現されている。

図 4.10 剪断を停止した時の**ø**3の時間依存 性。

4.4 過渡的ゲル化理論

ゲル化の古典論である Flory-Stockmayer 理論をランダムポリアニオンに使えるよう に拡張し、臨界剪断速度を濃度と温度の関数 として求めた。詳細は、論文①に譲り、ここ では結果のみ示す(図4.11)。

図 4.11 臨界剪断速度の濃度依存性。

5. 主な発表論文等 (研究代表者は下線)

〔雑誌論文〕(計 2件) ① Fumihiko Tanaka, Rika Takeda, <u>Kyoichi</u> <u>Tsurusaki</u>, J. Phys. Soc. Jpn. 、査読有、 accepted、 2018.

②<u>津留崎恭一</u>、武田理香、加藤千尋、末松健、 篠原大也、白崎良演、粘度光学同時観察装置 (レオオプティクスシステムの開発)、神奈 川県立産業技術総合研究所 研究報告、vol. 23、p.41、査読無、(2017).

〔学会発表〕(計 5件)
 ① <u>津留崎恭一</u>、武田理香、加藤千尋、末松
 健、篠原大也、白崎良演、振ると粘度上昇す

る PIC 水溶液の粘度-光学同時観察、神奈川 県ものづくり技術交流会、2017.

② 末松健、<u>津留崎恭一</u>、武田理香、PICの剪 断誘起構造の光学観察、神奈川県ものづくり 技術交流会、2017.

③ 篠原大也、末松健、白崎良演、武田理香、 <u>津留崎恭一</u>、PIC におけるゾルゲル転移の分 子量・濃度依存性、神奈川県ものづくり技術 交流会、2017.

④ 篠原大也、末松健、白崎良演、武田理香、 <u>津留崎恭一</u>、ダイラタンシー性ポリイオンコンプレックスの剪断による粘度上昇過程の 分子量依存性、日本物理学会春季大会 (2018).

⑤ 末松健、篠原大也、白崎良演、武田理香、 加藤千尋、<u>津留崎恭一</u>、ポリイオンコンプレ ックス水溶液における剪断誘起性構造の光 学測定、日本物理学会春季大会(2018).

〔産業財産権〕

- ○出願状況(計 0件)
- ○取得状況(計 0件)
- [その他]

6. 研究組織

(1)研究代表者
 津留崎 恭一 (TSURUSAKI Kyoichi)
 神奈川県立産業技術総合研究所・化学技術
 部材料化学グループ・グループリーダ
 研究者番号:90426388

(2)研究分担者
 白崎 良演(SHIRASAKI Ryoen)
 横浜国立大学・工学研究院・准教授
 研究者番号:90251751

〔その他の研究協力者〕 田中 文彦 (TANAKA Fumihiko) 京都大学・大学院工学研究科・名誉教授

武田 理香(TAKEDA Rika) 神奈川県立産業技術総合研究所・化学技術 部材料化学グループ

加藤 千尋 (KATO Chihiro) 神奈川県立産業技術総合研究所・化学技術 部環境安全グループ