```
機関番号: 12 102
研究種目: 基盤研究(C) (一般)
研究期間: 2015~2017
課題番号: 15 K 0 5 4 1 3
研究課題名 (和文) Pyrami dal Structures: New Type of Cl uster Compounds
研究課題名(英文) Pyrami dal Structures: New Type of Cl ust er Compounds
```

研究代表者
Lee VI adimir (Lee, VI adi mir)
筑波大学•数理物質系•講師
研究者番号: 90375410
交付決定額 (研究期間全体) : (直接経費) 3, 800, 000円

研究成果の概要（和文）：ピラミダンとは有機化学における最も挑戦的な合成ターゲット分子の1つであるが その顕著な重要性にもかかわらず，未だに合成されていない。無置換母体ピラミダンはもちろん，その誘導体 ですら単離，観測例はない。 本研究では，我々が以前に合成したシクロブタジエンジアニオンと典型元素ハロ ゲン化物との直接的な反応によってピラミダン誘導体を得るという全く新しい戦略を検討した。高周期14族元素を頂点に有するピラミダンおよび高周期 15 族元素の力チオン等電子体の合成に成功した。すべての新たに合成したピラミダンはX線結晶構造解析によりその分子構造を明らかにした。

研究成果の概要（英文）：Pyrani danes are anong the nost chal l enging synthetic target s for or ganic chemistry，which are still el uded their synthetic realization despite their evident interest and i mportance．Neither parent pyramidane C［C4H4］nor its derivatives have ever been isol at ed and char acterized．In the current project，we proposed and devel oped totally new synthetic strategy for the preparation of such el usi ve speci es by the strai ghtforward reaction of the readily available cycl obut adi ene di ani on derivatives（devel oped in our group）with the mai n group el ements hal ides． Usi ng this si mple approach，we succeeded in the synthesis of a whole series of the neur al group 14 el ement pyramidanes and their i soel ectronic cationic counter parts feat uring heavi er group 15 el enent at the top of the square pyramid．All new y i sol at ed pyramidanes were undoubt edly structurally char act er i zed．

研究分野：有機化学

キーワード：cl uster pyramidane housene cycl obut adi ene di anion group 14 el ement group 15 el ement

1．研究開始当初の背景

Pyramidal compounds（square pyramids， pentagonal pyramids，etc．）with their non－classical inverted geometry and hypercoordination at the apex are among the most fascinating organic chemistry targets，that challenge such fundamental textbook postulates as tetrahedral configuration and tetravalency of the sp^{3}－carbon atoms．This is further reinforced by the very usual non－classical bonding mode between the apex and base that cannot be adequately described by the current bonding theory．However， despite such evident interest，pyramidanes still remained to be elusive species that have never been synthesized and isolated．

Using our extensive previous experience in the field of cyclic polyene ligand transition metal complexes，featuring＂heavy＂ cyclobutadiene and＂heavy＂cyclopentadiene ligands，we attempted to develop a totally new approach for the synthesis of the main group element pyramidanes．Achieving this goal，we were planning to close the gap between the previously reported by us cyclobutadiene complexes of the s－block elements（alkali I alkaline earth metals）and d－block elements （transition metal complexes）by the synthesis of unprecedented cyclobutadiene complexes of the p－block elements，the so－called pyramidanes $\mathrm{E}^{\prime}\left[\mathrm{E}_{4}\left(\mathrm{SiR}_{3}\right)_{4}\right]\left(\mathrm{E}^{\prime}=\right.$ group 13－15 element， $\mathrm{E}=\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ ）（Scheme 1）．

Pyramidane
［ $\mathrm{n}=-1$ ，for $\mathrm{E}^{\prime}=$ group 13
$\mathrm{n}=0$ ，for $\mathrm{E}^{\prime}=$ group 14
$\mathrm{n}=+1$ ，for $\mathrm{E}^{\prime}=$ group 15］

Scheme 1

2．研究の目的

The final research goal of the current project is the development of the unprecedented pyramidal clusters of the main group elements．Following the synthesis of target pyramidanes，we were planning to investigate their non－classical bonding nature， structural and chemical properties，reactivity， and their potential application in the material science．Our synthetic strategy is based on the utilization of our readily available cyclobutadiene dianion derivatives $\left[\left(\mathrm{R}_{3} \mathrm{Si}_{4} \mathrm{E}_{4}\right]^{2-} \cdot 2 \mathrm{Li}^{+}(\mathrm{E}=\mathrm{C}, \mathrm{Si}, \mathrm{Ge})\right.$［Lee et al．：$J$ ． Am．Chem．Soc．2004，126，4758；J．Am．Chem．
Soc．2011，133，5103］，that have already been used for preparation of a number of sandwich
and half－sandwich complexes of transition metals［Lee et al．：Angew．Chem．Int．Ed．2007， 46，6596；Chem．Soc．Rev．2008，37，1652］．At the key step，such cyclobutadiene dianion derivatives will be reacted with the main group halides $\mathrm{RE}^{\prime} \mathrm{X}_{2}$（ $\mathrm{E}^{\prime}=$ group 13－15 element， $\mathrm{X}=$ halogen）forming the target pyramidal structures．Successful realization of the project purposes will have important impact from both academic and applied point of views．Thus pyramidanes，as the totally new class of cluster compounds，will be fundamentally interesting from the viewpoint of their non－classical structures，and unusual physic－chemical and chemical properties．On the other hand， pyramidal structures can serve as the convenient precursors for novel transition metal complexes having cyclobutadiene ligand． The latter compounds are of great interest as the precursors for new advanced materials for catalysis，alkene polymerization，nonlinear optical materials，molecular magnets， luminescent and fluorescent materials， medicine，etc．Moreover，the pyramidal compounds are very promising on their own， as the metal－rich clusters that could serve as thermal or photochemical precursors for ceramic composites and nanomaterials （nanoparticles，nanocrystals，nanowires）．

Our current study is totally original with no precedents in the proposed experimental strategy，being significant，highly competitive and challenging in the international research arena．

3．研究の方法

（1）In the first step of the project，we will challenge the synthesis of all－group 14 element－pyramidanes by the straightforward reaction of the cyclobutadiene， tetrasilacyclobutadiene，and tetragermacyclo－ butadiene dianion derivatives with the readily available dichlorogermylene，dichlorostan－ nylene and dichloroplumbylene and their dioxane complexes．Based on our preliminary theoretical studies，such reactions should proceed through the formation of the ＂housene＂－type intermediate，which immediately rearranges into more stable final product，pyramidane．
（2）In the next step，we plan to expand the range of accessible pyramidanes by the reaction of the cyclobutadiene dianion derivatives with the group 15 or group 13 element halides to generate the cationic or anionic pyramidanes，respectively，with the heteroatom at the apex of the square pyramid． Then we will optimize the reaction conditions for preparation of all pyramidanes to maximize their yields．Particular attention will be paid for
the right choice of solvent（polar or nonpolar）， and the right choice of the main group element halides（fluorides，chlorides，bromides，or iodides）．
（3）Following the preparation of pyramidal compounds of the main group elements，we will then systematically study their physico－chemical properties and reactivity．In particular，the non－classical bonding situation in pyramidanes will be studied by means of both experimental methods（X－ray crystallography，NMR spectroscopy， Mössbauer and Raman spectroscopy）and computational approaches（MO analysis， NBP／NPA，topological analysis（ELF，AIM））． The reactivity of pyramidanes towards their practical synthetic application will be also thoroughly explored，for example，their transmetalation reaction with coordination compounds as a route for the synthesis of novel transition metal complexes．As the potential material science application of pyramidanes，we will st udy thei r use as the precursors for ceramic and nanomaterial composites．

4．研究成果

（1）By the reaction of the cyclobutadiene， tetrasilacyclobutadiene，and tetragermacyclo－ butadiene dianion dialkali metal salts with the dichlorogermylene，dichlorostannylene and dichloroplumbylene（or their dioxane complexes）we successfully prepared the first examples of the neutral pyramidal compounds entirely consisting of the group 14 elements． All isolated compounds were fully characterized by means of X－ray diffraction， NMR spectroscopy and computational analysis to reveal the non－classical nature of their exceptionally long apex－to－base bonds （Scheme 2）［（a）J．Am．Chem．Soc．2013，135， 8794：highlighted in the C\＆E News（ACS）， 2013，91，issue 23，page 28；（b）Angew．Chem． Int．Ed．2015，54，5654；（c）Organometallics 2016，35，346：highlighted as the ACS Editor＇s Choice］．

Scheme 2
（2）Expanding the range of the synthetically accessible pyramidanes，we then prepared a
series of the cationic pyramidanes with the heavier group 15 element at the top of the square pyramid．Such compounds，which are isoelectronic to the neutral pyramidanes of the heavier group 14 elements，were uniformly prepared by the reaction of the cyclobutadiene dianion derivatives with the group 15 element trihalides $\mathrm{E}^{\prime} \mathrm{X}_{3}$（Scheme 3）．The influence of the reaction conditions（solvent（coordinating or non－coordinating），nature of the halogen X ， nature of the heavier group 15 element E^{\prime} ）were carefully investigated to understand the general trends in the stability of the resulting pyramidal systems．

Scheme 3
（2）Fi nally，we attempted the synthesi s of t he ani oni c pyr ami danes wi th the gr oup 13 el ements at the top of the square pyramid．These compounds are i soel ect r oni c to the neutral pyramidanes of the heavier group 14 elements and also to the cationic pyramidanes of the heavier group 15 elements．We applied the same synthetic approach，namely，the reaction of the cyclobutadiene dianion derivatives with the group 13 element trihalides $E^{\prime} X_{3}$ ，followed by the reduction of the intermediate housenes with alkali metals to generate anionic pyramidanes （Scheme 4）．Our preliminary results indicate that the target pyramidanes with the apical boron atom could be prepared，and we will then continue this research aiming isolation of the anionic borapyramidane derivatives，as well as synthesis of pyramidanes with other heavier group 13 elements at the top．

Scheme 4

5．主な発表論文等
 （研究代表者，研究分担者及び連携研究者に は下線）

〔杂信誌論文〕（11件）
1）（Bis（stibahousene）．V．Ya．Lee，K．Ota，Y． Ito，O．A．Gapurenko，A．Sekiguchi，R．M． Minyaev，V．I．Minkin，H．Gornitzka，J．Am． Chem．Soc．139，2017，13897－13902．査読有．DOI：10．1021／jacs．7b07712
2）Hybrid Group $15\left(\mathrm{E}^{15}\right)$－Group $14\left(\mathrm{E}^{14}\right)$ Element Cationic Pyramidal Structures $\mathrm{E}^{15}\left[\mathrm{E}^{14}{ }_{4}\left(\mathrm{SiR}_{3}\right)_{4}\right]^{+}$：A DFT Study．O．A． Gapurenko，V．Ya．Lee，R．M．Minyaev，V．I． Minkin，A．Sekiguchi，Tetrahedron Lett．58， 2017，2054－2057．査 読 有 ．DOI： 10．1016／j．tetlet．2017．04．040
3）The Study of Bonding in Pyramidanes
 （Raman，UV－vis）Spectroscopy and Quantum－Chemical Methods．Y．Ito，L．A． Leites，＊R．R．Aysin，S．S．Bukalov，V．Ya． Lee，H．Sugasawa，A．Sekiguchi，J．Mol． Struct．1130，2017，775－780．査読有．DOI： 10．1016／j．molstruc．2016．11．001
4）A Cationic Phosphapyramidane．V．Ya．Lee， H．Sugasawa，O．A．Gapurenko，R．M． Minyaev，V．I．Minkin，H．Gornitzka．A． Sekiguchi，Chem．Eur．J．，22，2016， 17585－17589．査 読 有 ．DOI： 10．1002／chem． 201604480
5）Group 14 Element Cationic Pentagonal－Pyramidal Complexes $\mathrm{E}^{\mathrm{a}}\left[\square^{5}-\mathrm{E}_{5}^{\mathrm{b}}\left(\mathrm{SiMe}_{3}\right)_{5}\right]^{+}\left(\mathrm{E}^{\mathrm{a}}=\mathrm{Si}-\mathrm{Pb}, \mathrm{E}^{\mathrm{b}}=\mathrm{Se}\right.$ ， Ge）：A Quantum－Chemical Study．O．A． Gapurenko，R．M．Minyaev，V．I．Minkin，＊ V．Ya．Lee，A．Sekiguchi，Phosphorus， Sulfur，and Silicon and the Related Elements 191，2016，609－612．査読有． DOI：10．1080／10426507．2015．1128917
6）$[2+2]$ Cycloaddition of the Schrock Titanium Silylidene and Acetylene．V．Ya． Lee，O．A．Gapurenko，V．I．Minkin，S． Horiguchi，A．Sekiguchi，Russ．Chem．Bull．， Int．Ed．Engl．65，2016，1139－1141．査読有．DOI：not available
7）Pyramidanes：The Covalent Form of the Ionic Compounds．V．Ya．Lee，O．A． Gapurenko，Y．Ito，T．Meguro，H．Sugasawa， A．Sekiguchi，R．M．Minyaev，V．I． Minkin，R．Herber，H．Gornitzka， Organometallics 35，2016，346－356．査読有．DOI：10．1021／acs．organomet．5b00924
［Highlights：1）ACS Editor＇s Choice；2） Chemistry World（RSC），February 26， 2016 （Research News）．
8）1，1－Dilithiosilanes，1，1－Dilithiogermanes and 1，1－Dilithiostannanes and Related Compounds：Organometallic Reagents of the New Generation．V．Ya．Lee，A．

Sekiguchi，Mendeleev Commun．25，2015， 161－167［Focus Article］．査読有．DOI： 10．1016／j．mencom．2015．05．001
9）From a $S i_{3}$－Cyclopropene to a $\mathrm{Si}_{3} S$－Bicyclo［1．1．0］butane to a $\mathrm{Si}_{3} S$－Cyclopropene to a $\mathrm{Si}_{3} S_{2}$－Bicyclo［1．1．0］butane：Back－and－Forth， and In－Between．V．Ya．Lee，O．A． Gapurenko，S．Miyazaki，A．Sekiguchi，R． M．Minyaev，V．I．Minkin，H．Gornitzka， Angew．Chem．Int．Ed．，54，2015， 14118－14122．査 読 有 ．DOI： 10．1002／anie． 201506625
10）Pentagermapyramidane：Crystallizing the ＂Transition State＂Structure．V．Ya．Lee， Y．Ito，O．A．Gapurenko，A．Sekiguchi，V．I． Minkin，R．M．Minyaev，H．Gornitzka， Angew．Chem．Int．Ed．，54，2015， 5654－5657．査 読 有 ．DOI： 10．1002／anie． 201500731
11）A Schrock－Type Germylene Complex： $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Et}\right)_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{Hf}=\mathrm{Ge}\left(\mathrm{SiMe}^{t} \mathrm{Bu}_{2}\right)_{2}$ ． N. Nakata，S．Aoki，V．Ya．Lee，A．Sekiguchi Organometallics 34，2015，2699－2702．査読有．DOI：10．1021／om501134a

〔学会発表〕（計 21 件）

1）Pyramidanes．V．Ya．Lee．VII International Symposium＂Chemistry and Chemical Education＂，Vladivostok，Russia，17－20 October 2017 ［Plenary］．
2）Pyramidanes．V．Ya．Lee，O．A．Gapurenko，A． Sekiguchi，R．M．Minyaev，V．I．Minkin． Russian－French Workshop on Hyper－and Hypocoordinated Compounds of the Group 14 Elements，Moscow，Russia，28－30 August 2017 ［Plenary］．
3）Pyramidanes．V．Ya．Lee，O．A．Gapurenko，A． Sekiguchi，R．M．Minyaev，V．I．Minkin． $22^{\text {nd }}$ International Conference on Organometallic Chemistry（EuCOMC－XXII），Amsterdam，The Netherlands，9－13 July 2017，P133．
4）Pyramidanes．V．Ya．Lee，O．A．Gapurenko，A． Sekiguchi，R．M．Minyaev，V．I．Minkin， $19^{t h}$ IUPAC International Symposium on Organometallic Chemistry Directed Towards Organic Synthesis（OMCOS－19），Jeju，South Korea，25－29 June 2017，PP1－34．
5）Synthesis of Pyramidanes with the Group 13 Element at the Apex．H．Sugasawa，V．Ya．Lee， A．Sekiguchi，O．A．Gapurenko，R．M． Minyaev，V．I．Minkin，97th Annual Meeting of The Chemical Society of Japan，Yokohama， Japan，16－19 March 2017，2E2－53．
6）Reactivity of the Cyclobutadiene Dianion Dilithium Salt Toward the Group 13 Element Halides．H．Sugasawa，V．Ya．Lee，A． Sekiguchi，O．A．Gapurenko，R．M．Minyaev，

V．I．Minkin，20th Symposium of the Society of Silicon Chemistry Japan，Hiroshima，Japan， 7－8 October 2016，P30．
7）Anti Van＇t Hoff－Le Bel Configurations as the Main Group Elements．V．Ya．Lee，O．A． Gapurenko，A．Sekiguchi，R．M．Minyaev，V．I． Minkin，Mendeleev Congress on General and Applied Chemistry，Ekaterinburg，Russia， 26－30 September 2016 ［Keynote］．
8）Pyramidal Structures of Group 13 and 15 Elements with Silicon Basal Rings．O．A． Gapurenko，V．Ya．Lee，R．M．Minyaev，V．I． Minkin，A．Sekiguchi，Mendeleev Congress on General and Applied Chemistry，Ekaterinburg， Russia，26－30 September 2016.
9）Group 14 Element Pyramidanes．O．A． Gapurenko，R．M．Minyaev，V．I．Minkin，V． Ya．Lee，A．Sekiguchi． $15^{\text {th }}$ International Conference on the Coordination and Organometallic Chemistry of Germanium，Tin and Lead（ICCOC－GTL－2016），Pardubice， Czech Republic， 28 August－2 September 2016，PP3．
10）Inverted Tetrahedral Geometry at the Heavier Group 14 Elements：Pyramidanes and Propellanes．V．Ya．Lee，O．A．Gapurenko，Y． Ito，Y．Meguro，H．Sugasawa，A．Sekiguchi，R． M．Minyaev，V．I．Minkin， $15^{\text {th }}$ International Conference on the Coordination and Organometallic Chemistry of Germanium，Tin and Lead（ICCOC－GTL－2016），Pardubice， Czech Republic， 28 August－2 September 2016，PL－2［Plenary］．
11）Phosphapyramidane．V．Ya．Lee，O．A． Gapurenko，H．Sugasawa，A．Sekiguchi，R．M． Minyaev，V．I．Minkin， $21^{\text {st }}$ International Conference on Phosphorus Chemistry （ICPC－XXI），Kazan，Russia，5－10 June 2016， V－OP01．
12）Synthesis and Structure of Phospha－and Bismapyramidanes．H．Sugasawa，V．Ya．Lee， A．Sekiguchi，O．A．Gapurenko，R．M． Minyaev，V．I．Minkin，96th Annual Meeting of The Chemical Society of Japan，Kyoto， Japan，24－27 March 2016，2E2－53．
13）Inverted Tetrahedral Geometry at the Main Group Elements：Pyramidanes and Propellanes．V．Ya．Lee，$I^{\text {nd }}$ Winter School on Organic Chemistry（WSOC－2016）， Krasnovidovo，Russia，16－21 January 2016 ［Plenary］．
14）Cationic Pyramidanes．H．Sugasawa，Y．Ito，V． Ya．Lee，A．Sekiguchi，O．A．Gapurenko，R．M． Minyaev，V．I．Minkin，The 42nd Symposium on Main Group Element Chemistry，Nagoya， Japan，3－5 December 2015，O－22．

15）Synthesis and Structure of Cationic Pyramidanes．H．Sugasawa，V．Ya．Lee，A． Sekiguchi，O．A．Gapurenko，R．M．Minyaev， V．I．Minkin，19th Silicon Symposium，Biwako， Moriyama，Japan，23－24 October 2015，P32．
16）Cationic Phosphapyramidane：Synthesis， Structure，and Reactivity．H．Sugasawa，V．Ya． Lee，A．Sekiguchi，O．A．Gapurenko，R．M． Minyaev，V．I．Minkin，26th Symposium on Physical Organic Chemistry，Matsuyama， Japan，24－26 September 2015，1P127．
17）Raman Study of Organometallics of a Novel Class－Pyramidanes $E\left[\mathrm{C}_{4}\left(\mathrm{SiMe}_{3}\right)_{4}\right], \mathrm{E}=\mathrm{Ge}$ ， Sn, Pb ．L．A．Leites，R．R．Aysin，S．S． Bukalov，V．Ya．Lee，H．Sugasawa，A． Sekiguchi，．International Conference ＂Organometallic and Coordination Chemistry：Achievements and Challenges＂ （VI Razuvaev Lectures），Nizhny Novgorod， Russia，18－23 September 2015，P65．
18）Group 14 Element Pyramidanes：Theoretical Studies．O．A．Gapurenko，V．Ya．Lee，R．M． Minyaev，V．I．Minkin，Y．Ito，T．Meguro，H． Sugasawa，A．Sekiguchi， $14^{\text {th }}$ International Symposium on Inorganic Ring Systems （IRIS－14），Regensburg，Germany，26－31 July 2015，P－054．
19）Pyramidanes：the Covalent Form of an Ionic Compound．V．Ya．Lee，O．A．Gapurenko，Y． Ito，T．Meguro，H．Sugasawa，A．Sekiguchi，R． M．Minyaev，V．I．Minkin，H．Gornitzka，R． Herber， $14^{\text {th }}$ International Symposium on Inorganic Ring Systems（IRIS－14）， Regensburg，Germany，26－31 July 2015， A－17．
20）Silicon－Containing Pyramidanes．O．A． Gapurenko，V．Ya．Lee，T．Meguro，R．M． Minyaev，V．I．Minkin，A．Sekiguchi．XIII ${ }^{\text {th }}$ Andrianov Conference＂Organosilicon Compounds：Synthesis，Properties， Applications＂，Moscow，Russia， 28 June－1 July 2015，PO－16．
21）Towards the Novel Route for the $\mathrm{Si}=\mathrm{C}$ Double Bond Formation：Silicon Version of the Metathesis Process．V．Ya．Lee，XIII ${ }^{\text {th }}$ Andrianov Conference＂Organosilicon Compounds：Synthesis，Properties， Applications＂，Moscow，Russia， 28 June－1 July 2015，P－1［Plenary］．

〔図書〕（計 3 件）

1）Organosilicon Compounds，Volume 1： Theory and Experiment（Synthesis）． （Ed．V．Ya．Lee），Elsevier／Academic Publisher，USA，2017， 756 pages．
2）Organosilicon Compounds，Volume 2：

Experiment（Physico－Chemical Studies） and Applications．（Ed．V．Ya．Lee）， Elsevier／Academic Publisher，USA，2017， 410 pages．
3）Heavier Group 14 Element Redox Systems V．Ya．Lee，A．Sekiguchi，In Organic Redox Systems：Synthesis，Properties，and Applications（Ed．T．Nishinaga），Wiley， Hoboken，2016，Chapter 19.

〔産業財産権〕
○出願状況（計 0 件）
○取得状況（計 0 件）
〔その他〕
6．研究組織
（1）研究代表者
リー ヴラヂイミール（LEE VLADL MR）
筑波大学•数理物質系•講師
研究者番号：90375410

