科学研究費助成事業

研究成果報告書

研究成果の概要(和文): 本研究は,眼底血管内および周辺細胞内の酸素濃度(分圧)を定量的に計測・イメー ジングするためのりん光プローブ分子および眼底顕微りん光寿命イメージング装置を開発した。りん光プローブ 分子(DTTPH-PEG24)はイリジウム錯体を骨格とし,近赤外光りん光を示した。DTTPH-PEG24をウサギに投与し, 開発したシステムで眼底部を観察したところ,吸気酸素分圧に依存してりん光寿命が変化した。よって,開発し たプローブ分子および寿命イメージングシステムにより,小動物の眼底部の酸素化状態をイメージングできるこ とが明らかとなった。

研究成果の概要(英文): We developed a phosphorescent probe and a phosphorescence lifetime imaging microscopy to clarify an oxygen level into a blood vessel and a tissue in retina of small animals. The synthesized phosphorescence probe (DTTPH-PEG24) based on iridium complex showed the near infrared emission. The phosphorescence lifetimes of DTTPH-PEG24 which was administered to the rabbit were dependent on the oxygen partial pressure. These results that our system can visualize an oxygenation of retina of small animals.

研究分野:光化学

キーワード: りん光 イリジウム錯体 酸素 寿命 顕微鏡 網膜

1.研究開始当初の背景

眼底部位の血管が異常をきたすと網膜が 低酸素状態となり失明にいたる。特に糖尿病 網膜症は,我国成人の失明原因の第1位であ り,糖尿病の3大合併症の1つである。糖尿 病網膜症は病態ががなり進行するまで自覚 症状がない場合が多く,病態の発見と治療を 困難としている。研究代表者は,代表的な低 酸素病態である'がん'を光イメージング するために,低酸素環境下でのみ強いりん光 を示すイリジウム錯体(Ir 錯体, BTP)を開発 し,それらを用いて担がんマウス内の腫瘍の 選択的光イメージングに成功した(図1) [Cancer Res., 70, 4490-4498, 2010.]。本 研究では,光が深部まで到達する組織として 眼を対象とする。低酸素状態によって誘発さ れる眼疾患は失明に直結するため, quality of life(QOL)の観点からも病態の早期発見は 重要な課題である。

投与前

投与1時間後

図1 BTP の構造式および腫瘍イメージング

本申請課題では,これまで研究代表者が開 発してきた Ir 錯体のりん光の酸素応答性を 利用して,眼底部位の酸素濃度計測・イメー ジングに挑戦する。そのために,マクロズー ム顕微鏡と ICCD カメラを組み合わせた定量 的計測装置および,眼底血管内または眼底細 胞内に局在する新規 Ir 錯体を開発する。

2.研究の目的

本研究の目的は,眼底虚血疾患における眼 底血管内および周辺細胞内の酸素濃度(分 圧)を定量的に計測・イメージングするため の眼底顕微りん光寿命イメージング装置お よびりん光プロープ分子を開発することで ある。イメージング装置は,マクロズーム顕 微鏡と時間分解画像を取得できるゲート付 き CCD カメラ(ICCD カメラ)から構成される。 これにより,眼底部全体の酸素濃度に加えて, ズームレンズを用いることで血管周辺細胞 の酸素濃度もイメージングできる。また, ICCD カメラによって寿命イメージング画像 を構築するため,投与されたりん光プローブ 分子の濃度に関係なく定量化が可能となる。 りん光プローブ分子は,イリジウム錯体を基 軸として血液中を循環する水溶性イリジウ ム錯体と細胞内に移行する細胞親和性の高 いイリジウム錯体を開発する。

3.研究の方法

(1)眼底部をイメージングする試薬として, 一般にフルオレセインが用いられる。フルオ レセインは緑色蛍光を示すため,眼底部の酸 素レベルを検出するプローブ分子の発光は, フルオレセインとは異なる波長が望ましい。 本研究では,図2に示すイリジウム錯体 (DTTPH-PEG24)を合成した。

図 2 DTTPH-PEG24 の構造式

(2)小動物眼底部の毛細血管と組織を区別し てイメージングするための眼底顕微りん光 寿命イメージングシステムの開発を行った (図3)。顕微鏡はマクロズーム顕微鏡 (MVX-10,オリンパス),寿命イメージング 用カメラはゲート付き CCD カメラ(ICCD カメ ラ,PI-MAX3, Princeton),励起光源 (FDSS532-Q,CryLas)は,Nd:YAG レーザー の第二高調波(532nm)を用いた。小動物の 眼底部に焦点を当てるために,マクロズーム の対物レンズと小動物の間に前置レンズ (40D,Volk)を設置した。励起光源と ICCD はデジタルディレイパルスジェネレータ (DG645,Stanford Research Systems)を用 いて時間制御を行った。

図 3 眼底顕微りん光寿命イメージングシス

テム

(3)開発した DTTPH-PEG24 の光化学・光物理 特性(吸収・りん光スペクトル,りん光量子 収率,りん光寿命)を空気飽和および窒素置 換した溶液中で測定を行った。

(4)フルオレセインおよび DTTPH-PEG24 を用 いたウサギ眼底イメージングは,群馬大学大 学院医学系研究科秋山教授と行った。麻酔下 にあるウサギの耳介静脈から生理食塩水/ジ メチルスルホキシド(19:1)混合溶媒に溶 かしたフルオレセイン(90μmol)および DTTPT-PEG24(50μmol)を投与した。ウサギ の吸気酸素分圧は,ガス混合装置(GM8000, TOKAI HIT)を用いて制御した。

4.研究成果

(1)図4にDTTPH-PEG24のテトラヒドロフラン(THF)中における吸収スペクトルおよび 発光スペクトルを示す。DTTPH-PEG24は600nm 付近から光を吸収し、520nmに第一吸収極大 波長を示す。よって、Nd:YAGレーザーの第二 高調波(532nm)で光励起することが可能で ある。発光スペクトルの極大波長は708nmに 観測され、近赤外光領域に発光を示す。窒素 置換下における発光強度と比較して、空気飽 和下の発光強度は著しく減少していること から、酸素消光を受けることがわかる。よっ て、得られた発光は、DTTPH-PEG24のりん光 に帰属することができる。THF中においてり ん光寿命を測定したところ、窒素飽和下では 6.58µs、空気飽和下では0.54µsであった。

図 4 THF 中における DTTPH-PEG24 の吸収・ 発光スペクトル

(2)図5にフルオレセインおよびDTTPH-PEG24 の発光顕微画像を示す。フルオレセインにお いては,眼底血管部の発光強度が弱く,血管 周辺の網膜の発光強度が強いことがわかる。 これはフルオレセインが小分子であるため, 投与後,短時間のうちに血管外に漏れ出たた めである。一方,DTTPH-PEG24 では,視神経 乳頭付近の血管部位から強い発光が見られ る。これは,DTTPH-PEG24 が血中においてア ルブミンに取り込まれ,その状態で血中に止 まっていると考えられる。DTTPH-PEG24 のア ルブミンとの親和性を確認するために,牛血 清アルブミン(BSA)存在下および非存在下 で,発光測定を行ったところ,存在下におい て発光強度が著しく増加した。図4の画像は, 通常の CMOS カメラで撮影した画像であるた め,プロープ分子の局在について知見が得ら れる。

図 5 フルオレセインおよび DTTPH-PEG24 投 与後に撮影したウサギ眼底部の発光顕微画 像

(3)ウサギ眼底部の酸素レベルを明らかにす るために,ICCDカメラを用いて視神経乳頭付 近の撮影を行った。図6に吸気酸素分圧21% および 12.5%におけるりん光強度画像およ びりん光寿命画像を示す。12.5%において眼 底部のりん光寿命が増加していることから, 吸気酸素分圧の減少に伴い,眼底部が低酸素 状態に変化したことが分かる。また,血管領 域と網膜領域の 10x10 ピクセルの各 4 領域 (ROI) について, それぞれりん光寿命を計 算した。その結果を図7に示す。両領域にお いて,寿命の増加が観測され,また,再度21% の酸素分圧に戻すと,寿命がほぼもとに戻る ことが示された。これらの結果より,本研究 で開発した DTTPH-PEG24 および眼底顕微りん 光寿命イメージングシステムを用いること により, ウサギ眼底部の酸素化状態をイメー ジングできることが明らかとなった。

図 6 ウサギ眼底部のりん光強度およびりん 光寿命イメージング画像

図 7 ウサギ眼底部の血管と網膜のりん光寿 命の吸気酸素分圧依存性

5.主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計0件)

〔学会発表〕(計2件)

<u>T. Yoshihara, H. Akiyama</u>, H. Obinata, S. Rokudai and S. Tobita, Two Dimensional Intracellular and *in vivo* Oxygen Sensing by Using a Gated ICCD Camera, 3rd International Symposium of Gunma University Medical Innovation and 8th International Conference on Advanced Micro-Device Engineering, 2016年12月9日,桐生市市民文化会館 (群馬県,桐生市)

<u>T. Yoshihara</u>, H. Obinata, <u>H. Akiyama</u>, and S. Tobita, Ratiometric Optical Probes for Intracellular Oxygen Sensing, 2nd International Symposium of Gunma University Medical Innovation, 2015 年 12 月 8 日, 群馬大 学医学部(群馬県,前橋市)

〔図書〕(計0件)

〔産業財産権〕

出願状況(計0件)

名称: 発明者: 権利者: 種類: 番号: 出願年月日: 国内外の別:

取得状況(計0件)

名称: 発明者: 権利者: 種類: 番号: 取得年月日: 国内外の別:

〔その他〕 ホームページ等 http://tobita-lab.chem-bio.st.gunma-u.a c.jp/

6.研究組織

(1)研究代表者
吉原 利忠(YOSHIHARA, Toshitada)
群馬大学大学院理工学府・准教授
研究者番号:10375561

(2)研究分担者
秋山 英雄(AKIYAMA, Hideo)
群馬大学大学院医学系研究科・教授
研究者番号: 60359586

(3)連携研究者

()

研究者番号:

(4)研究協力者