交付決定額(研究期間全体):(直接経費)

科学研究費助成事業

研究成果報告書

平成 2 9 年 6 月 9 日現在 機関番号: 1 3 9 0 1 研究種目: 挑戦的萌芽研究 研究期間: 2015 ~ 2016 課題番号: 1 5 K 1 3 3 3 6 研究課題名(和文)フレキシブル基板を用いた機能性材料の歪みによる物性制御 研究課題名(英文)Controlling the functionality of thin films prepared on flexible, metal technical substrates 研究代表者 飯田 和昌(IIDA, Kazumasa) 名古屋大学・工学研究科・准教授 研究者番号: 9 0 7 4 9 3 8 4

3,000,000円

研究成果の概要(和文):フレキシブルな金属基板(MgO中間層付き)上に超伝導薄膜を成膜し,低温でも機械的に大きな歪みを薄膜に印加できる小型デバイスを作成した。このデバイスを用いて,鉄系超伝導BaFe1.92Co0.08As2薄膜の抵抗を圧縮歪みを印加しながら測定したところ超伝導転移温度が低下する傾向が観測された。またMg0,CaF2単結晶基板上に成膜したBa(Fe1-xCox)2As2薄膜の電子相図を作成したまたの内伸長・圧縮歪みの影響を広地し、数は見の悪くなけやに低なまるいと言うの別をしたまたので、

の影響を反映し,単結晶の電子相図を全体的に低Coあるいは高Co側へと移動させたものと一致した。

研究成果の概要(英文): Superconducting thin films were prepared on flexible metal substrates in order to induce a huge in-plane strain at cryogenic temperatures. For this purpose, we have fabricated a small device based on piezo electric materials. We demonstrated a successful tuning of the superconducting transition temperature of BaFe1.92Co0.08As2 thin films by compressive in-plain strain. Additionally, we have constructed the electronic phase diagrams of Ba(fe1-xCox)2As2 thin films on MgO and CaF2 single crystalline substrates. It was found that MgO substrate induces tensile

in-plane strain whereas CaF2 substrate yields in-plane compressive strain. The resultant phase diagrams are observed to various shift in comparison of the single crystal, i.e., low Co region by

tensile in-plane strain and high Co region by compressive in-plane strain, respectively.

研究分野:超伝導

キーワード: 動的歪み 鉄系超伝導薄膜 ピエゾ効果 電子相図

1. 研究開始当初の背景

近年、ピエゾ基板の上に機能性材料を成長さ せ, 逆ピエゾ効果を使った動的歪みにより物 性を制御する研究が報告されている。ピエゾ 効果が最も大きく現れる材料は Pb(Mg_{1/3}Nb_{2/3})_{0 72}Ti_{0 28}O₃ (PMN-PT)で,現在で はピエゾ基板として汎用的に使われている。 例えば PMN-PT 上にエピタキシャル成長した La_{0.7}Sr_{0.3}MnO₃ は歪みの効果でキュリー温度 が約 20 K も変化する[C. Thiele et al, Phys. Rev. B 75,054408 (2007)]。申請者もこの手法を適 用し,近年発見された鉄系超伝導体 (Coドー プ BaFe₂As₂)をパルスレーザー堆積 (PLD) 法によりSrTiO3中間層付きPMN-PT基板に成 長させ、動的歪みによる超伝導転移温度(T_c) の変化を報告した [S. Trommler, K. Iida et al, New J. Phys. 12, 103030 (2010)]。 しかし PMN-PT は低温で動作が緩慢になり, 超伝導 転移温度の変化が小さいことが分かった。ま た, PMN-PT は約 650°C から徐々に分解する ことが報告されており、650℃以上の成長温 度が必要な機能性材料をPMN-PT上に成膜す ることは不可能であった。一方、申請者は PLD 法により 2 軸配向した MgO 中間層付き 金属基板上に Co ドープ BaFe₂As₂鉄系超伝導 体薄膜の成長に成功した [K. lida et al, Appl. Phys. Express 4,013103 (2010)]。この金属基板 は厚みが 0.1 mm 程で可撓性に富み, 銅酸化 物超伝導テープ線材に使用されている。従っ て,このような金属基板の上に機能性薄膜を 成長させることが出来れば,低温でもより大 きな面内圧縮あるいは引っ張り歪みを機械 的に加えることが可能になる。また金属基板 上にピエゾ材料が成膜出来れば,低温環境下 でも歪みを加えることで大きな電圧が現れ, これを応用した新規デバイスの可能性も広 がるものと考えられる。さらに、MgO 中間層 付き金属基板は高温でも安定であるため、高

い成長温度が必要な機能性材料も成膜が可 能となる。このように可撓性に富んだ金属基 板を用いることで,従来とは全く次元の異な る高いレベルでの歪み印加が可能であり,機 能制御の新たな手法と成り得るものと考え られる。本研究ではモデル材料として近年発 見された鉄系超伝導体に注目し,超伝導特性 を面内歪みにより制御することを目的とす る。

2. 研究の目的

歪みを印加すると物性が変化するのは古く から様々な材料で良く知られており、近年、 逆ピエゾ効果を使った動的歪みにより物性 を制御する研究が報告されている。申請者は 鉄系超伝導体をピエゾ基板の上に成膜し,超 伝導転移温度がピエゾ基板に加える電圧、す なわち機械的な圧力により変化することを 報告した。しかし、ピエゾ素子は低温で動作 が緩慢になり、大きな面内圧力を薄膜に加え ることは難しい。この問題を解決し、従来と は全く次元の異なる高いレベルの歪みを印 加するために,申請者は可撓性に富んだ金属 基板上に薄膜を作製するという着想に至っ た。この方法は低温でも薄膜に大きな歪みを 機械的に加えることが可能になる。本研究で は上述した高レベルな歪みを人口的に制御 し、モデル材料として鉄系超伝導体の物性制 御を目的とする。

3. 研究の方法

本研究では、3つの取り組みを行った。

(1) 低温でも十分な大きさの歪みを印加でき るデバイスの作成。

(2) 2 軸配向した MgO 中間層付き金属基板上 への機能性薄膜の作製。

(3) MgO, CaF2 単結晶基板上へ成膜した
 Ba(Fe_{1-x}Co_x)₂As₂薄膜の電子相図の作成。

図 1 作成した歪み印加デバイスの外観写 真と, 歪み印加時の模式図。

4. 研究成果

(1) 低温でも十分な大きさの歪みを印加でき るデバイスの作成

本デバイス(図 1)の作成は, C. Hicks らの論文 [*Rev. Sci. Instrum.* **85**, 065003 (2014)]を参考に 行った。この装置の大きな特徴は, 3 つのピ エゾ素子が並列に組み込まれていることで ある。デバイスの両端に設置されたピエゾ素 子にプラス(伸長歪み),中間に設置された ピエゾ素子にマイナスのバイアス電圧(圧縮 歪み)を印加することで低温でも大きな歪み を印加することが可能となる。この装置の動 作テストの結果を図 2 に示す。110 Vのバイ アス電圧を印加すると約 1.2 µm の変位が得 られた。またデバイス作成と同時に,伝導冷 却システムの立ち上げも行い,約 5 K までの 輸送特性評価が可能となった。

(2) 2 軸配向した MgO 中間層付き金属基板上 への機能性薄膜の作製

Co-doped BaFe₂As₂ 薄膜は, 共同研究先の

図 2 試料をマウントしていない状態にお けるデバイスの動作テストの結果。110 V 印加時に約 1.2 µm の変位が得られた。

図 3 金属基板上に作製した Co-doped BaFe₂As₂薄膜のX線回折測定結果。

Karlsruhe Institute of Technology, Institute of Technical Physics へ修士課程学生が研究滞在 を行い作製した。図3にPLD法で,2軸配向 した MgO 中間層付き金属基板上に作製した Co-doped BaFe₂As₂薄膜のX線回折測定結果 を示す。Co添加量は超伝導転移温度が最も高 くなる8%とした。図3からCo-doped BaFe₂As₂ 薄膜はエピタキシャル成長しているのが分 かる。また MgO 中間層との配向関係は, (001)[100]BaFe₂As₂||(001)[100]MgO である。し かし, 面内 X線のピーク半値幅は大きく約 5°程度であった。

次に、(1)で作成したデバイスに(2)で得られ た薄膜の抵抗の歪み依存性を図4に示す。こ の薄膜試料は低温でもゼロ抵抗を示さなか ったので、測定温度をT=8Kで固定し、歪み を印加しながら抵抗測定を行った。図4より 圧縮歪みにより抵抗が上昇しているのが分 かる。この結果から、面内圧縮歪みにより超 伝導転移温度が低温側に移動したと考えら れる。これは、Pドープされた BaFe₂As₂単結 晶に[100]に平行に圧縮歪みを加えた結果と 定性的に同じである[*Phys. Rev. B*86, 134507 (2012)]。一方、伸長歪みによる抵抗の変化は ほぼ観測されなかった。

図4 最適 Co ドープされた T=8 K における 抵抗の歪み依存性の測定結果。

(3) MgO, CaF₂ 単結晶基板上へ成膜した
 Ba(Fe_{1-x}Co_x)₂As₂薄膜の電子相図の作成

歪みの影響により電子相図がどのように変 化するのかを調べるために、Ba(Fe1-xCox)2As2 薄膜を MgO, CaF2単結晶基板上へ成膜した。 MgO 基板は伸長歪みを、CaF2 基板は圧縮歪 みを薄膜に印加することが X 線回折測定の 結果から明らかになった。図 5(a)と(b)に MgO, CaF2 単結晶基板 上 へ 成 膜 し た Ba(Fe_{1-x}Co_x)₂As₂薄膜の電子相図を示す。伸長 歪みが印加された場合、単結晶試料と比較し て反強磁性転移温度(T_N)は低くなり、また超 伝導ドームは低 Co 側へと移動した。一方, 圧縮歪みが印加された場合には、反強磁性転 移温度は高くなり,超伝導ドームは高 Co 側 へと移動した。図 5(c)と(d)は、常伝導状態に おける抵抗率 $\rho_n \ge \rho_n = \rho_0 + AT^n$ でフィッティ ングした際に得られた指数 n を Co 添加量 x

図 5 MgO, CaF₂単結晶基板上へ成膜した Ba(Fe_{1-x}Co_x)₂As₂薄膜の電子相図。

でプロットした結果である。この結果から, nが1近傍に近づく,すなわち非フェルミ液 体的な振る舞いを示す組成領域では,最も高 い*T*。を示すことが分かる。

バンド計算の結果より Fe 3d の xz/xy 軌道の k_z の分散と T_N に強い相関があることが分か った。すなわち, 圧縮歪みが印加されると k_z の分散が小さくなり T_N が上昇する。一方, 伸 長歪みが印加されると k_z の分散が大きくなり T_N が低下する。それと同時にフェルミ面は 3 次元的になる。これは Co を添加した場合と 同じ傾向である。

以上のように薄膜を用いた歪みによる物性 の制御を目的に研究を行った。金属基板上に 機能性材料を成膜し、低温での歪みによる物 性の変化を観測することが出来た。しかし、 金属基板上へ成膜された薄膜は、MgO 中間層 の結晶性、具体的にはモザイシティが 5°程度 であるため、薄膜の歪みが大幅に緩和してい る可能性がある。したがって今後は、中間層 の結晶性を向上させる必要がある。一方、

MgO, CaF₂ 単 結 晶 基 板 上 に 成 膜 し た Ba(Fe_{1-x}Co_x)₂As₂薄膜の電子相図は, それぞれ 面内伸長・圧縮歪みの影響を反映し, 単結晶 (無歪み)の電子相図を全体的に低 Co ある

いは高Co側へと移動させたものと一致した。

5. 主な発表論文等

(研究代表者,研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計1件)

①. <u>K. Iida</u> *et al*, Hall-plot off he phase diagram for Ba(Fe_{1-x}Co_x)₂As₂, Nature Scientific Reports 6, 28390/1-9 (2016). DOI:10.1038/srep28390 (査読あり)

〔学会発表〕(計2件)

- 川口 直樹,浦田 隆広,畑野 敬史, <u>飯田 和昌</u>,生田 博志,Ca(Mn,Zn)₂Bi₂ の磁気相図と磁気輸送特性,日本物理学 会 2016 年秋季大会,2016.09.16,金沢大 学(石川県)
- ②. 松本 利希,川口 昴彦,畑野 敬史, 原田 俊太,<u>飯田 和昌</u>,宇治原 徹, 生田 博志,強磁場スパッタ法によるマ ンガン窒化物薄膜の作製,第63回応用 物理学会春季学術講演会,2016.03.20,

東京工業大学(東京都)

- 川口 直樹,畑野 敬史,<u>飯田 和昌</u>, 生田 博志,Zn 部分置換による CaMn₂Bi₂ 単結晶の強磁性誘起とその物 性,第63回応用物理学会春季学術講演 会,2016.03.22,東京工業大学(東京都)
- ④. <u>飯田 和昌</u>, Large Split between Nematic and Magnetic Transition in Ba(Fe_{1-x}Co_x)₂As₂ Strained Films, 28th International Symposium on Superconductivity, 2015.11.17, タワーホ ール舟掘(東京都)

〔図書〕(計0件)

〔産業財産権〕

○出願状況(計0件)

○取得状況(計0件)

6. 研究組織

- (1)研究代表者
- 飯田 和昌(IIDA, Kazumasa)
 名古屋大学・大学院工学研究科・准教授
 研究者番号:90749384
- (2)研究協力者

Ruben Hühne, Dimitry Efremov, Stefan-Ludwig Drechsler Institute for Solid State and Materials Research Dresden, Institute for Metallic Materials

Vadim Grinenko Technical University Dresden

Bernhard Holzapfel, Jens Hänisch Karlsruhe Institte of Technology, Institute for Technical Physics