科学研究費助成事業

研究成果報告書

科研費

平成 2 9 年 6 月 1 2 日現在 機関番号: 1 2 6 0 8 研究種目: 挑戦的萌芽研究 研究期間: 2015 ~ 2016 課題番号: 1 5 K 1 3 3 4 7 研究課題名(和文) X線ポンプ(共鳴磁気散乱)とプローブ(弾性散乱)による磁性電子雲の観測 研究課題名(英文) Observation of the magnetic electron-density by resonant and non-resonant X-ray magnetic scatterings 研究代表者 佐々木 聡(Sasaki, Satoshi) 東京工業大学・科学技術創成研究院・教授 研究者番号: 1 0 1 6 2 3 6 4

交付決定額(研究期間全体):(直接経費) 2,900,000円

研究成果の概要(和文):X線共鳴磁気散乱では、干渉で磁気散乱強度を強調でき、元素や席選択的に電子遷移 に関係づけた磁気情報を取り出せる。本研究では、入射と散乱X線の偏光の基底状態を円偏光オペレータで扱う ことで、共鳴と非共鳴の磁性電子を同時に観測できる円偏光磁気散乱法(CP-RXMS)を開発した。両磁性電子を 同時に観測できるため、内殻電子の共鳴散乱で電子をポンピングし、それと同時に弾性散乱で超交換相互作用で 拡がった電子軌道を観測する手段を得た。 フェリ磁性体であるガドリニウム鉄ガーネットやマグネタイトに対し、左右円偏光でのX線散乱強度の差を係 数とするフーリエ合成を行い、超交換相互作用に関与する磁性電子の電子密度を求めた。

研究成果の概要(英文): The X-ray intensity difference between right- and left-handed circular polarization makes it possible to detect the magnetic electron-density in crystals with the aid of both resonant X-ray magnetic scattering (RXMS) and non-resonant ones. Our analysis is characterized in that it uses circular polarizations as a basis for initial and final states of X-ray scattering (CP-RXMS). Polarization dependence of the asymmetric ratio between right- and left-handed polarized scattering amplitudes has revealed that resonant and non-resonant magnetic scatterings can be observed simultaneously.

In this study, synchrotron X-ray intensity experiments were conducted on Gd iron garnet (GdIG) and magnetite (Fe304) at the pre-edge of the Fe K absorption edge. We observed the presence of hybridization of the magnetic electron orbitals as well as of the resonant magnetic Fe3+. The proposed method has a potential to be widely used in the crystal structure analysis.

研究分野: 固体物理・X線結晶学

キーワード: X線共鳴磁気散乱 円偏光 不対電子密度 X線弾性散乱 放射光 4軸回折計 磁気構造解析 希土 類鉄ガーネット 1.研究開始当初の背景

×線散乱の大部分は、×線の電場と電子の 電荷との相互作用による電荷散乱である。そ のため、中性子回折法に比べ、×線回折は磁 気構造解析には不向きであると考えられて きた。しかし、小さな単結晶試料が使えるこ と以外にも、×線吸収端の近傍で×線共鳴磁 気散乱(RXMS)法を利用すれば、電子遷移を 特定した解析が可能になる。また、観測強度 に関して、電荷散乱と磁気散乱の干渉により 共鳴磁気散乱能が3桁強まることが報告され ている[1]。この RXMS は、並河ら[2]により 世界に先駆け日本で最初に観測された歴史 がある。

RXMS 法は、当初、磁性薄膜の研究に用いられていたが、単結晶磁気構造解析としても徐々にではあるが進展してきた。磁場反転と円偏光反転の利用が考えられるが、後者での強度差(非対称度 $\Delta I/2I$)が、特定の電子軌道が関与する電子遷移と関係づけられてきている。マグネタイト(Fe₃O₄)で測定された左右円偏光X線の非対称度は、電子のスピンを考慮した局所密度近似LSDA計算と良い一致を示すことが報告された(図1)[3]。

図 1 マグネタイトのX線共鳴磁気散乱因子 のエネルギー依存性(左図 [3])と LSDA 計 算状態密度 DOS(右図 [4])との比較。

共鳴磁気散乱は元素選択性や席選択性が あり、複数の磁性元素を含む系で、注目する 元素に着目した磁気構造解析が行える。例え ば、Baフェライト中のFe原子の磁気モーメ ントの傾きがX線回折で求まっている[5]。ま た、フェリ磁性マグネタイトにおいて、磁性 電子密度がFe原子の中心から離れた位置で 共鳴磁気散乱により観測されている[6]。この 電子分布は、内殻電子による一般的な共鳴磁 気散乱では説明できず、更なる精査を必要と している。

[1] J. P. Hannon et al. (1988) Phys. Rev. Lett. 61,
1245. [2] K. Namikawa et al. (1985) J. Phys.
Soc. Jpn. 54, 4099. [3] M. Okube & S. Sasaki
(2014) J. Appl. Cryst. 47, 1387. [4] V. I.
Anisimov et al. (1996) Phys. Rev. 54, 4387. [5]
M. Okube et al. (2010) AIP Conf. Proc., 1234,
871. [6] Y. Kaneko et al. (2010) AIP Conf.
Proc., 1234, 883.

2.研究の目的

本研究では、X線が回折する時間と電子遷 移が起こる時間とに時間差があることに着 目する。特定の電子遷移に係る磁気情報(電 子のスピン分極)が放射光X線構造解析とど のように関連づけられるか、その理論的可能 性を考察した上で、放射光実験で実証してい くことを目的とした。

電子軌道やスピン配列を含む結晶構造を X線で完全に解くには、3次元回折強度デー タを基にフーリエ変換、あるいは、それに類 する方法で電子密度を直接求めることが重 要である。そのために、調べたい結合電子軌 道へ電子を内殻から跳ね飛ばすポンプ役を 共鳴磁気散乱に担わせる。そして共鳴散乱で 跳ね飛ばされた先で電子が係る磁性電子雲 をX線弾性散乱(トムソン散乱)としてピン ポイント観測する。すなわち、共鳴原子のみ ならず隣接原子の混成軌道をも直接観察す る手法の開拓を目指している。

3.研究の方法

円偏光X線の特徴をうまく利用すると、磁 性電子を電子遷移に関連づけて共鳴させる X線共鳴磁気散乱で、共鳴と非共鳴の磁性電 子が同時に観測にかかる。入射と散乱X線の 偏光の基底状態を円偏光オペレータで完備 性を持たせて記述すると、非共鳴電子をも含 めた磁気構造解析が可能になり、超交換相互 作用にかかわる磁性電子が観測にかかる。今 回開発した手法を従来のRXMSと区別する ため、新たに円偏光X線共鳴磁気散乱 (CP-RXMS)法と名づけた。

双極子遷移と運動学的回折理論が成り立つとき、磁性イオンのX線散乱振幅は、

$$\begin{split} f &= -r_0 f_D \boldsymbol{e}_f^* \cdot \boldsymbol{e}_0 \left[f_0 + \alpha \left(F_{11}^{(e)} + F_{1-1}^{(e)} \right) \right] \\ &+ \mathrm{i} r_0 f_D \left\{ \frac{\hbar \omega}{mc^2} \frac{1}{2} \boldsymbol{A} \cdot \boldsymbol{L}(\boldsymbol{K}) + \boldsymbol{B} \cdot \boldsymbol{S}(\boldsymbol{K}) \right] + \mathrm{i} \left(\boldsymbol{e}_f^* \times \boldsymbol{e}_0 \right) \\ &\cdot \boldsymbol{z}_{\mathrm{J}} \alpha \left(F_{1-1}^{(e)} - F_{11}^{(e)} \right) \right\} \end{split}$$

で表される [1,7]。 r_0 :古典電子半径、 f_D : Debye-Waller 因子、 f_0 :Thomson 弾性散乱因 子、 $e_0 \ge e_f$:入射と散乱 X線の偏光単位ベク トル、 α :異常散乱係数、 $\hbar\omega/mc^2$:エネルギ ーと電子静止質量の比、 $A \ge B$:偏光依存ベ クトル、L(K):原子軌道、S(K):スピン磁化、 z_j :磁気モーメントの量子化軸ベクトル、 F_{LM} :電子遷移 $L(\Delta_l) \ge M(\Delta_m)$ での双極子共鳴 の強さである。

図2 円偏光X線と回折幾何の概念 [8]。

X線散乱振幅を CP-RXMS として求めるた

め、入射 X 線と散乱 X 線の偏光の基底状態に 円偏光オペレータを導入した。図 2 に波数ベ クトル k_0 、 k_f や散乱角 θ と円偏光オペレータ の左右円偏光成分 e_R 、 e_L の関係を示す。 の偏光依存項は、左右円偏光状態を表す 2 × 2 マトリックス

$$\begin{pmatrix} \boldsymbol{e}_{R} \rightharpoonup \boldsymbol{e}'_{R} & \boldsymbol{e}_{L} \rightharpoonup \boldsymbol{e}'_{R} \\ \boldsymbol{e}_{R} \rightharpoonup \boldsymbol{e}'_{L} & \boldsymbol{e}_{L} \rightharpoonup \boldsymbol{e}'_{L} \end{pmatrix}$$

で与えられる。ここで、 $e \ge e'$ は入射および 散乱偏光ベクトルの基底状態、 $R \ge L$ はそれ ぞれヘリシティ+1 と-1の右ネジおよび左ネ ジ円偏光を示す。 式の $e_f^* \cdot e_0 \ge e_f^* \times e_0$ を展 開して、円偏光を基底にしたときのX線散乱 振幅を求めると、

$$\begin{split} f &= -r_0 f_D \begin{pmatrix} \cos^2 \theta & \sin^2 \theta \\ \sin^2 \theta & \cos^2 \theta \end{bmatrix} \begin{bmatrix} f_0 + \alpha \left(F_{11}^{(e)} + F_{1-1}^{(e)} \right) \end{bmatrix} \\ &+ \mathrm{i} \, r_0 f_D \begin{pmatrix} \hbar \omega \\ mc^2 \end{bmatrix} \begin{pmatrix} 0 & \mathbf{k}_0 \times \mathbf{k}_f \\ \mathbf{k}_0 \times \mathbf{k}_f & 0 \end{pmatrix} + \mathrm{i} \, \sin^2 \theta \begin{pmatrix} \mathbf{k}_0 - \mathbf{k}_f & -(\mathbf{k}_0 + \mathbf{k}_f) \\ -(\mathbf{k}_0 + \mathbf{k}_f) & \mathbf{k}_f - \mathbf{k}_0 \end{pmatrix} \end{bmatrix} \cdot \mathbf{S}(\mathbf{K}) \\ &+ \begin{bmatrix} \frac{1}{2} \begin{pmatrix} \mathbf{k}_0 \times \mathbf{k}_f & -\mathbf{k}_0 \times \mathbf{k}_f \\ -\mathbf{k}_0 \times \mathbf{k}_f & \mathbf{k}_0 \times \mathbf{k}_f \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \mathbf{k}_0 - \mathbf{k}_f & -(\mathbf{k}_0 + \mathbf{k}_f) \\ \mathbf{k}_f - \mathbf{k}_0 \end{pmatrix} \end{bmatrix} \cdot \mathbf{z}_1 \, \alpha \left(F_{1-1}^{(e)} - F_{1-1}^{(e)} \right) \right\}, \end{split}$$

となる。非対称度

$$\Delta I/2I = (I^{\rm R} - I^{\rm L})/(I^{\rm R} + I^{\rm L})$$

を求めるため、 式を展開し、

$$\frac{\Delta I}{2I} \simeq -\frac{2\sin\chi[(F_0 + F')(\sin^3\theta F_{0m} + \sin\theta F''_m) + \sin\theta F''F''_m]}{A_{ch}|F_0 + F' + iF''|^2}$$

が得られる[8]。ここで、 F_0 , F', F'', F_{0m} , F'_m , F''_m は、それぞれ、Thomson 散乱因子 f_0 , 共鳴電 荷散乱因子 f', f''、磁気散乱因子 f_{0m} 、および共 鳴磁気散乱因子 f_m , f'_m が関与する部分結晶構 造因子である。なお、 A_{ch} は 式の $e_f^* \cdot e_0$ 項 に対する偏光オペレータである。 式の電 荷・磁気干渉項に、非共鳴項 F_{0m} と共鳴項 F'_m が含まれるのが、本 CP-RXMS 法の特徴であ る。 式は、図 2 のように外部磁場をかけた 単結晶試料を4軸回折計にセットして測定 された。 式は、4軸角 χ が90度に近い領域 のブラッグ反射に対し成り立つが、sin χ が掛 かっているため、低角度 χ の寄与は小さい。

図 2 外部磁場 *H*、量子化軸 *z*_jと4 軸回折計 χ 軸との関係[8]。c:結晶、M:希土類磁石、 G:ゴニオメータヘッド。

フェリ磁性体の CP-RXMS 研究では、ΔI/2I のエネルギー依存を放射光を用いて当該元 素の前吸収端で測定し、共鳴磁気散乱実験の 目的にあった X 線波長を選定する。その後、 数十~数百個のブラッグ反射に対し 3 次元 積分反射強度を左・右円偏光で測定する。こ のとき、ΔI/2Iの磁気応答ピークが電子遷移と 関係づけられ、左・右円偏光での散乱強度差 を係数とする差フーリエ合成を行うことで、 磁性電子密度が求まる。

[7] M Blume (1985) J. Appl. Phys. 57, 3615.
[8] Y. Sasaki, M. Okube & S. Sasaki (2017) Acta Cryst. A 73, 257.

4.研究成果

(1) 円偏光 X 線共鳴磁気散乱 (CP-RXMS) 式の展開から新たな解析法を開発した。その 結果、共鳴原子の磁性電子のみならず、外殻 電子や隣接原子との結合電子まで含めた混 成軌道を観察する手段を得た。

(2) フェリ磁性体であるガドリニウム鉄ガー ネット (GdIG; Gd₃Fe₅O₁₂)で、Fe イオンに注 目した CP-RXMS を測定した。注目する数個 の反射の $\Delta I/2I$ のエネルギー依存を求めた後、 得られた RXMS ピークの起源を調べるため 温度依存実験(補償温度 $T_{comp} \leq 291$ K)を実 施し、磁気モーメントのフェリ磁性配列を確 認した。

特殊位置を占める原子が存在するため、ガ ーネット構造では、反射の指数の間に特有の 規則性が存在する。例えば、-120-2反射と -10-2-4反射の結晶構造因子は、

$$F(-12\ 0\ -2) = (15.16f_{\text{Fe2}} + 15.48f_{\text{Gd}} - 0.20f_{\text{O}}) \exp(-W)$$

 $F(-10 - 2 - 4) = (15.22f_{\text{Fe1}} + 7.56f_{\text{Fe2}} + 7.72f_{\text{Gd}} + 4.44f_{\text{O}})\exp(-W)$

で与えられる。前者の反射タイプ(-120-2、 -8-4-6、-100-4)にはFe1サイトからの寄 与が含まれない。後者の-80-8、-10-2-4 反射ではすべてのサイトからの寄与がある。 WはDebye-Waller因子である。CP-RXMSの エネルギー依存測定の結果から、3つの磁気 応答ピーク、正ピークA(*E*=7.1075 keV)、負 ピークB(*E*=7.1085 keV)、正ピークC(*E*=7.1089 keV)が観測された(図3)。

図 3 GdIG の非対称度 (CP-RXMS 法、Fe K

前吸収端)[8]。

CP-RXMS ピーク A, B, C が 5 反射すべてで同 様の傾向を示すことから、その起源は Fe2 サ イト中の Fe³⁺であると考えられる。その磁気 応答ピークは XMCD ピーク(図3下)より も見かけ上、高分解能で得られている。

式に基づいて共鳴磁気散乱因子の実数 項 f_m を求めた。 f_m のエネルギー依存性を図 4 に示す。

図4 共鳴磁気散乱因子 f_mのエネルギー依存 (Fe K 前吸収端)[8]。

(3) CP-RXMS の非対称度に非共鳴磁気散乱 の寄与が含まれることを実証できた。その後、 負ピーク B の X 線波長で、GdIG の 3 次元反 射強度データを左右円偏光で収集し、磁性電 子密度分布を CP-RXMS から求めた。

フーリエ合成法によれば、単位格子内の座 標 *x*,*y*,*z* での電子密度 ρ(*x*,*y*,*z*)は、

 $\rho(x, y, z) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} F_{\text{obs}}(hkl) \exp[-2\pi i(hx + ky + lz)]$

と表すことができる。このとき、観測値と計 算値の結晶構造因子 F(hkl)の差を係数に用い れば、差フーリエ合成法になる。この差フー リエ合成法の原理を用い、左・右円偏光での 結晶構造因子の差を係数にして、

$$\rho(x, y, z)^{mag} = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} \{F_{obs}(hkl)^{R} - F_{obs}(hkl)^{L}\} \exp[-2\pi i(hx + ky + lz)]$$

$$\approx \frac{1}{V} \sum_{h k l} \{[F_{obs}(hkl)^{R}] - [F_{obs}(hkl)^{L}]\} \exp(i\varphi_{calc}) \exp[-2\pi i(hx + ky + lz)]$$

と電子密度式を近似的に展開した。 式では、 左・右円偏光で X 線回折強度に差が生じる磁 性電子のみが抽出され、その磁性電子がもつ 電子密度分布が得られた。

式に基づいて求めた GdIG の $x_3 = 0$ 断面 での磁性電子密度分布を図 5 に示す。 $\rho(x,y,z)^{mag}$ の正および負ピークが、それぞれ、 $+0.05 \text{ e}/\text{Å}^3$ および $-0.22 \text{ e}/\text{Å}^3$ の高さで、Fe1 と Fe2 サイトの Fe³⁺位置に現れている。以上の 結果は、図5右側の結晶構造図に示すような フェリ磁性スピン配列を示唆する。絶対値で、 Fe1 サイトの磁性電子密度が Fe2 サイトより 小さくなるのは、双極子遷移禁制のためであ るが、混成軌道が存在するため、低い電子密 度が観測にかかっていると思われる。

一方、Gd サイトの周りでは、Gd 原子の位置に -0.12 e/A^3 の負電子密度ピークが、中心から少し離れて一対の電子密度(0.27 e/A^3)が 観測される。Gd の周りのピークは非共鳴の磁気散乱因子 f_{0m} に起因すると考えられる。

図 5 GdIG の $x_3 = 0$ 面での磁性電子密度図 $(e/Å^3)$ [8]。 $0 \le x_1 \le 0.6$; $0 \le x_2 \le 0.6$.

Fe2 サイトの周りでの磁性電子密度分布を 図 6 に示す。Fe2 サイトの中心から4 つのツ ノ状の負の磁性電子密度が酸素原子を避け て広がっていて、その磁性電子密度には Fe³⁺ とその周りの酸素原子が関わっていると考 えられる。この電子分布は磁気モーメント配 列を再現しており、Gd と Fe との間には、酸 素原子の 2p 軌道を介した超交換相互作用が 存在すると示唆される。

図6 $x_3 = 1/8$ を切片とする a_1-a_2 面でのGdIGの磁性電子密度図 ($e/Å^3$) [8]。中心に Fe2 サイトが、三角記号の上下に酸素原子が存在する。

本研究により、共鳴と非共鳴の磁性電子を 同時に観測できる円偏光磁気散乱法 (CP-RXMS)の有効性を確認した。CP-RXMS により、内殻電子の共鳴散乱で外殻電子をポ ンピングし、X線弾性散乱で測定することで、 超交換相互作用で拡がった磁性電子軌道を 直接観測する手段を得た。

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に

は下線) [雑誌論文](計 4件) Y. Sasaki, M. Okube and S. Sasaki, Resonant and non-resonant magnetic scatterings with circularly polarized X-rays: Magnetic scattering factor and electron density of gadolinium iron garnet, Acta Crystal lographica A, 査読 有. Vol.73. 2017. pp.257-270. DOI: 10.1107/S2053273317003588 M. Okube, J. Yoshizaki, T. Toyoda and S. Sasaki, Cation distribution and structure of magnetic M-tvpe BaTiMnFe₁₀O₁₉ examined by synchrotron X-ray and neutron studies, J. Appl. Crystal lography, 查読有, Vol.49, 2016, pp.1433-1442. DOI: 10.1107/S1600576716010591 T. Nakatani, A. Yoshiasa, A. Nakatsuka, T. Hiratoko, T. Mashimo, <u>M. Okube</u> and <u>S.</u> High temperature Sasaki, single-crystal X-ray diffraction study of tetragonal and cubic perovskite-type barium titanate phases, Acta Crvstallographica B, 查読有, Vol.72, 2016, pp.151-159, DOI: 10.1107/S2052520615022544 佐々木 聡、共鳴散乱法によるX線精密 構造解析と材料開発、新素材共同研究開発 センター(東北大学金属材料研究所) 査 読有、Vol.7, 2016, pp.8-12, http://www.crdam.imr.tohoku.ac.jp/pub lications/index.html [学会発表](計10件) K. Fuchigami, Y. Sasaki, M. Okube and S. Sasaki, Circularly polarized X-rays and appearance of resonant and non-resonant magnetic scatterings, AsCA '2016, 14th Conference of the Asian *Crystallographic* Association, 2016.12.4-7, Hanoi (Vietnam), MS3.P06. S. Nishino, Y. Sasaki, M. Okube and S. Magnetic electron-density Sasaki, distributions in Y and Gd iron garnets observed synchrotron by X-rav diffraction at the Fe K pre-edge, AsCA '2016, 14th Conference of the Asian *Crystallographic* Association. 2016.12.4-7, Hanoi (Vietnam), MS12.P02. T. Osaka, M. Okube and S. Sasaki, Temperature dependence of magnetic moments of Fe ions in Gd₃Fe₅O₁₂ examined by resonant X-ray magnetic scattering,

AsCA'2016, 14th Conference of the Asian Crystallographic Association, 2016.12.4-7, Hanoi (Vietnam), MS12.P03.

M. Okube and <u>S. Sasaki</u>, Site occupancy and energy state of electrons of Mn in Mn_xFe_{3-x}O₄ spinel, ASCA '2016. 14th Conference of Asian the *Crystallographic* Association, 2016.12.4-7, Hanoi (Vietnam), MS18.P05. A. Nakatsuka, F. Yachi, A. Yoneda, A. Yoshiasa, K. Fujiwara, S. Sasaki and K. Sugivama. Variable-temperature single-crystal X-ray diffraction study of CalrO₃ post-perovskite, AsCA'2016, Conference of 14th the Asian *Crystallographic* Association. 2016.12.4-7, Hanoi (Vietnam), MS18.P06. 佐々木聡、奥部真樹、放射光と共鳴磁気 散乱:結晶学のアプローチと未来、 金属材 料研究所共同利用ワークショップ、 2016.12.12-13、(東北大学). 佐々木暢、<u>奥部真樹、佐々木聡</u>、円偏光 X線と共鳴・非共鳴磁気散乱(1)Gd鉄ガ ーネット、日本結晶学会年会 2016、 2016.11.17-18、茨城県立県民文化センタ - (水戸市)、PA-22. 中塚晃彦、矢地史幸、米田明、吉朝朗、 藤原恵子、佐々木聡、杉山和正、ポストペ ロブスカイト型 Calr03 の結晶構造の温度 依存性と原子変異挙動、日本結晶学会年会 2016、2016.11.17-18、茨城県立県民文化 センター(水戸市)、PA-19. 奥部真樹、佐々木聡、Mn フェライトの陽 イオン席占有率と電子密度分布、日本結晶 *学会年会 2015*、2015.10.17-18、大阪府立 大学(堺市), 17-0A-02. <u>奥部真樹、佐々木聡、X線共鳴磁気散乱</u> によるマグネタイトの Fe 磁性電子密度の 観測、*金属材料研究所ワークショップ*、 2015.12.14-15、(東北大学).

〔その他〕

ホームページ(佐々木研究室) http://www.sasakiken.net/

- 6.研究組織
- (1)研究代表者

佐々木 聡 (Satoshi Sasaki) 東京工業大学・科学技術創成研究院・ 教授 研究者番号: 10162364

(2)研究分担者

奥部 真樹 (Maki Okube) 東北大学・金属材料研究所・ 准教授 研究者番号: 10397060