科学研究費助成事業

平成 31 年 4 月 2 7 日現在

研究成果報告書

機関番号: 15301 研究種目: 挑戦的萌芽研究 研究期間: 2015~2018 課題番号: 15K13745 研究課題名(和文)Mnクラスターの形成を促進する超分子配位システム

研究課題名(英文)Supramolecular Coordination System for the Construction of Mn Clusters

研究代表者 依馬 正(Ema, Tadashi)

岡山大学・自然科学研究科・教授

研究者番号:20263626

交付決定額(研究期間全体):(直接経費) 3,000,000円

研究成果の概要(和文):2つの水分子を4電子酸化して酸素分子を与える光化学系11の酸素発生中心(Mnクラ スター)は、光合成における心臓部である。本研究ではこれによく似たMnクラスターを合成するための超分子戦 略として、Mnクラスターに対して3つのカルボキシラート基を真横から配位させ系統的な構造チューニングが可 能な超分子配位システムを構築する。6つのピリジン部位を有するテンプレート分子を用いたクロスカップリン グ反応を駆使して、ポルフィリン単量体から大環状ポルフィリン六量体を収率53%で合成することに成功し た。同様に、大環状ポルフィリン四量体を収率14%で合成した。種々の分光学的・光物性測定によりこれらの 特徴を精査した。

研究成果の学術的意義や社会的意義 光合成では水分子を酸化し(水から電子を取り出し)酸素分子を発生している。取り出された電子はエネルギー 源として用いられており生命活動の維持に使われている。この光合成の心臓部が光化学系IIの酸素発生中心(Mn クラスター)である。このMnクラスターは、容易には合成できない構造をしている。これによく似たMnクラスタ ーを合成するための超分子配位システムを構築するという挑戦的な研究に取り組んだ。試行錯誤の結果、鋳型分 子を用いたクロスカップリング反応を駆使してポルフィリン単量体から大環状ポルフィリン六量体を合成でき た。鋳型を除くと空孔内でMnクラスターを形成するための超分子配位システムになると期待される。

研究成果の概要(英文):The naturally-occurring oxygen-evolving system in photosynthesis II (Mn cluster) oxidizes two water molecules into an oxygen molecule. In this work, we aimed at a supramolecular coordination system for the generation of Mn clusters. Using a template molecule having six pyridine moleties, we successfully synthesized a macrocyclic porphyrin hexamer by a cross-coupling reaction (53%). Likewise, a macrocyclic porphyrin tetramer was also prepared in 14% by the template synthesis. These porphyrins were characterized by a series of photo-physical measurements.

研究分野: 有機合成化学

キーワード: ポルフィリン 光合成 マンガンクラスター 鋳型合成

E

様 式 C-19、F-19-1、Z-19、CK-19(共通)1.研究開始当初の背景

2つの水分子を4電子酸化し酸素分子を与える光化学系 II の酸素発生中心(Mn クラスター) は、光合成における心臓部である。本研究では、これによく似た Mn クラスターを合成するため の超分子戦略を開発する。Mn クラスターに対して3つのカルボキシラートを真横から配位させ つつ系統的な構造チューニングが可能な超分子配位システムを目指す。大環状 Zn ポルフィリン 六量体-ビスピリジン配位子-Mn クラスターからなる超分子を合成し X-線結晶構造解析を狙う。 本研究で得た大環状ポルフィリン多量体は空孔内で Mn クラスターを形成するための超分子配位 システムとして有望である。

ポルフィリンは18π系芳香族分子であり、優れた光学特性や金属配位能、剛直な構造のため、 分子認識、触媒、光学材料などの分野で注目されている。植物の光合成系の光捕集アンテナでは、 ポルフィリン骨格を持つクロロフィルが環状に配列しており、効率的な励起エネルギー移動が 達成されている。その結晶構造が明らかになり、ポルフィリンを環状多量化することで光捕集ア ンテナを模倣する研究が行われてきた。環状ポルフィリン多量体は、骨格の多様性に加えて架橋 部位や環周囲の修飾により性質が大きく異なることが期待される。しかし、環状ポルフィリン多 量体は巨大分子であるため多段階合成を要し、精製も困難であることから、合成効率は良好とは いえなかった。最近、適切な鋳型(テンプレート)分子を用いることで環状多量体を選択的に効 率良く合成する例が報告されている。

2. 研究の目的

本研究では、メタフェニレンを 組み込んだ新規六量体Z6及び四 量体Z4を設計・合成した。三重 結合がポルフィリンに直接結合 することで、遷移双極子モーメン トが大きくなり、クロロフィルに 近い電子状態となる。この環状ポ ルフィリン多量体の合成の際に アンプレートを用いることで選 択的かつ高収率な合成を目指す こととした。さらに、合成した環 状多量体の光学特性も調査した。

3. 研究の方法

環状多量体を合成するための原料となる単量体1の合成を行った。単量体1を用いて、反応濃度、溶媒、テンプレートの有無などを変更して多量体の収率を比較し、反応条件を最適化した。 GPC で精製し単離した六量体及び四量体を¹H NMR と質量分析により確認したところ、テンプレートが配位した Z6・T6、Z4・T4 として得られた。テンプレートの有無による光学特性の違い を紫外可視吸収スペクトルと蛍光スペクトルにより調査した。DFT 計算により溶液中での構造 について考察し、光学特性との相関を明らかにした。多量体とテンプレートの強い錯形成能が示 唆されたため UV 滴定を行ったところ、極めて大きな結合定数が算出された。

- 4. 研究成果
- 合成と構造解析

まず 5,15-ジエチニルポルフィリンを用いて、六配位テンプレート分子 T6 による鋳型合成を 試みた。この際、Glaser カップリングによるブタジイン形成を抑えるため銅フリーな条件で薗頭 カップリングを行った。NMR 収率 9%で環状六量体 Z6・T6 の生成を確認した。しかしこの合成 法では、環状体と同時に直鎖状多量体も生成してしまい、環状体の単離ができなかった。そこで、 ヨードフェニルエチニル基とエチニル基を有する非対称なポルフィリン単量体 1 を用いて鋳型 合成を行った。その結果、直鎖状多量体の生成が抑えられ、収率 53%で Z6・T6 を単離できた。

で環状ポルフィリン四量体 Z4・T4 が得られた。 デルボ、四量体の合成においてもテンプレート効果 環状六量体 Z6・T6 と環状四量体 Z4・T4 の¹HN 環状体の対称的な構造を反映したポルフィリン1 環状多量体による遮蔽効果を受けて高磁場シフ Z6・T6 及び Z4・T4 においては、テンプレート分 ことから、テンプレートは環状多量体が多点配位 として単離されたと考えられる。

4 られた Z6・Z6 と Z4・T4 のデンプレートの脱離を行った。はじめに、Z6・T6 と Z4・T4 に塩 酸を作用ざせて脱亜鉛するごとでテンプレートを脱離させ、フリーベース環状体 H6 および H4 vis absorption (left) and fluorescence (reletion condition of the co

Figure 3. 環状六量体の吸収スペクトル及び蛍光スペクトル

CHCl₃と pyridine 溶液中で吸収スペクトルと蛍光スペクトルを測定した(Figure 3)。六量体では、 単量体に比べてレッドシフトしていた。このことから隣接するポルフィリン同士の分子内での 電子的相互作用が示唆された。pyridine 中では CHCl₃ 中よりもさらに大きくレッドシフトした。 **Z6・T6** と **Z6** が全く同じ波形を示しているため、pyridine 中では **Z6・T6** のテンプレートが外れて pyridine が配位した **Z6** と同じ構造(**Z6・(Py)**₆)になっていることが示唆された。環状多量体になる と、蛍光量子収率はわずかに減少した。これは、多量化によって巨大分子となり構造の自由度が 大きくなったため構造変化にエネルギーが使われているためと考えられる。

四量体は、テンプレートとしてポルフィリンが配位するため、CHCl₃中でのZ4·T4はZ4(449 nm)とT4(421 nm)由来の二つのSoret 吸収帯を持ち、Z4 由来の吸収帯(449 nm)はZ4 単体と比較して減衰した(Figure 4)。一方 pyridine 中では、Z4·T4 とZ4 はほぼ同じ波形を示し、T4 の脱離が示唆された。四量体の蛍光測定には、励起波長にZ4 の吸収極大である 450 nm とT4 の吸収極大である 420 nm を用いた。CHCl₃中、Z4·T4 はどちらの励起波長でもZ4 由来の蛍光(665 nm)のみ観測され、T4 由来の蛍光(645,709 nm)は観測されなかった。T4 を選択的に励起できる 420 nm の励起波長でもZ4 からの発光のみ確認されたため、テンプレートから環状体へのエネルギー移動を強く示唆している。Z4 を選択的に励起できる 450 nm の励起波長でもZ4 からの蛍光が確認されたが、いずれの場合も蛍光量子収率は大きく減少した。

Figure 4. 環状四量体の吸収スペクトル及び蛍光スペクトル

(3) DFT 計算

DFT 計算により環状多量体の安定構造を求めた。Z6・T6 の¹H NMR スペクトルからは、対称 な六角柱型(pillar)構造が予想された。しかし計算の結果、シクロヘキサン環がとるような椅子型 (chair)および船型(boat)がそれぞれ最安定、準安定構造であった(Figure 5a)。pillar 型は、chair 型と 比較すると 11 kcal/mol も不安定であり寄与が小さい。ただし、Z6・T6 は剛直な構造ではなく、 ある程度柔軟に変化できる構造的自由度を持っていることが示された。Z6 は pillar 型と chair 型 が不安定であり、共役による安定化を獲得できる平面型(planar)が最安定となった(Figure 5b)。準 安定構造の chair 型より 7 kcal/mol 安定であるため寄与が大きい。したがって、吸収・蛍光スペ クトルにおける Z6・T6 と Z6 の差異は、軸配位子の有無だけではなく配座(最安定構造)の違い にも起因していると考えられる。

Z4・T4 は六量体に比べて径が小さく自由度が低いため pillar 型が最安定であった(Figure 6a)。 Z4 は立体障害のため平面構造はとることができないが、pillar 型は安定構造ではなくポルフィリン平面が傾いた四種類の構造が安定であった。これらのエネルギー差は小さいため、それぞれの 配座の平衡状態にあることが示唆された(Figure 6b)。

Figure 5. (a) Z6・T6 の計算構造 (b) Z6 の計算構造

Figure 6. (a) Z4・T4 の計算構造 (b) Z4 の計算構造

(4) 会合定数

Z6と**T6**の会合定数 K_{T6} をUV 滴定により決定した。まず CHCl₃中**Z6**に**T6**を加えていくこ とで直接 K_{T6} を算出しようとしたが、会合定数が大きすぎるため滴定曲線が直線に近い形になり 求めることができなかった。そこで、**Z6**と pyridine の会合定数($K_1 = 1.1 \times 10^{21}$ M⁻⁶)と **Z6**•**T6**と pyridine の会合定数($K_2 = 0.22$ M⁻⁵)から間接的に求めることとした。その結果、 $K_{T6} = 5.0 \times 10^{21}$ M⁻¹ と算出され、テンプレート**T6**がポルフィリンに非常に強く配位していることが確認された。

Z4 と **T4** の会合定数も六量体と同様に、**Z4** と pyridine の会合定数($K_3 = 1.0 \times 10^{14} \text{ M}^4$)と **Z4**・**T4** と pyridine の会合定数($K_4 = 0.072 \text{ M}^3$)から求めたところ、 $K_{T4} = 1.4 \times 10^{15} \text{ M}^{-1}$ となり、**Z4** と **T4** の 強い配位が示された。

5. 主な発表論文等

〔学会発表〕(計3件)

(1)前田千尋,外山翔貴,高石和人,<u>依馬</u>正、大環状ポルフィリン多量体の鋳型合成とその性質、 第12回バイオ関連化学シンポジウム、2018.9.9(大阪)

(2)前田千尋,外山翔貴,高石和人,<u>依馬</u>正、薗頭カップリングによる環状ポルフィリン六量体のテンプレート合成、第16回ホスト-ゲスト・超分子化学シンポジウム、2018.6.2(野田)
(3)前田千尋,外山翔貴,高石和人,<u>依馬</u>正、環状ポルフィリン六量体のテンプレート合成、日本化学会第98春季年会、2018.3.22(船橋)

6.研究組織 研究協力者 研究協力者氏名:前田千尋 ローマ字氏名:Chihiro MAEDA

研究協力者氏名:高石和人 ローマ字氏名:Kazuto TAKAISHI