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Development of X-ray CT algorithm that integrates information of
absorption-contrast and phase-contrast X-ray
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Phase-contrast X-ray imaging is a technique that visualizes the refractive
indexes of materials, and is expected to visualize soft tissues or small tissues those are hard to
visualize by a conventional absorption-contrast X-ray imaging that visualizes the absorption
coefficients of materials. Although the phase-contrast X-ray projection imaging progresses aiming
for clinical application, phase-contrast X-ray computed tomography is struggle for practical
realization due to the vulnerability to the observation noise or numerical error as well as the long

scanning time. In this project, we develop a novel algorithm for the phase-contrast X-ray computed
tomography that suppresses the above-mentioned problems by constructing a statistical model that

bases on the physical observation process of the edge-illumination phase:contrast_X—rag imaging and
by developing a statistical algorithm for estimating the hidden signals in the noisy observations.
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