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Causal discovery in the presence of hidden confounding variables for data with
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LiNGAM model handles only continuous variables. To represent heterogeneity,
we tried to extend the LiNGAM model so that it can handle discrete variables. We developed a model
assuming that the relationship between discrete variables and continuous variables is a non-cyclic
directed graph. We also considered combining a causal model with a machine learning model that can
handle discrete variables. To deal with unobserved common causes, we extended instrumental variable
methods by making use of non-Gaussianity and independence. In addition, a method to infer where the
unobserved common cause is likely to be is proposed within the framework of the LiNGAM model.
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