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Aiming at the construction of large-scale machine learning system, we
conducted researches in the following three directions; 1) the system architecture in terms of
network configuration, 2) effects on convergence, 3) machine learning applications.l) we
investigated the relationship between network configuration and distribution method, using existing
simulator. We found that relatively poor network configuration suffice the machine learning
applications.2) we developed a novel hybrid simulator and investigated the effect, and found that

the learning rate is quite important for parallelization. 3) we studied reinforcement learning and
image generation.
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