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Investigation of knowledge acquisition process during implicit learning task
using reinforcement learning models
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Understanding the skill acquisition process and developing the effective way
to help the skill acquisition has been one of the big issues in psychology. In this study, we adopt
reinforcement learning agent as a benchmark for human performance in perceptual matching tasks,

which make it possible to investigate qualitatively the relationship between learner®s overt and
covert knowledge about the task. The results indicated that (1) the overt knowledge about the task
was divided into the representation of task structure and heuristics, (2) the timing that the
knowledge about the task became overt did not necessarily relate to the amount of covert knowledge,
and (3) the simplified task structure as an advice promoted the learner®s performance through
increasing the action variation.
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Main effect of advice and block
number was significant (advise:
F{3,26)#6.66, p<.002., partial n=.44,
block number: £(3,78)=53.49, p<.001,
partial n*=.67).

Interaction was also not
significant(F(9,78)=.2.25, p=.03, partial
ni=21).
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