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Construction of Al-assisted Real-time water level prediction system

Furuyama, Shoichi
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A water level prediction system by artificial intelligence (Al) for coastal
region of Toyama-bay was developed. We try to predict the tide level using the neural network (NN).
IT it is NN, you can predict the tide level taking into consideration the influence of the
atmospheric pressure. The tide level is predicted using the tide level data for the past 24 hours as
the input value to the NN. The tide level data is transmitted in real time from the Toyama-bay, and

by adjusting the composition of NN, the learning pattern, etc.

Method: Observed data from 17/12/2008 to 3/2/2009 at NIT Toyama was tried on the system. The system

predicts for future 24 hours tide from past 24 hours tide data by NN. Result: The predicted tide was
compared with training data. The predicted tide was reasonable agreed with real observed tide data.
As a result, it was possible to predict the tide level with an average error of 3 cm, which allows

learning to be completed within one hour.
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Fig.1: Neural Networks for Tide Prediction System
Input Layer Hidden Layer Output Layer
NN Fig-1

24 24

(Fig.2(Left)) NN
cm (Fig-2(Right))

Twitter
Fig.3

Fig.2 Dataset for Neural Networks
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Fig.2 (Left) Dataset for Neural Networks (Right)
Compared with Observed Data (Training Data) and
Predicted Data by Neural Networks (Output)
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Fig.3 Spreaded Prediction Data on Twitter
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