研究成果報告書 科学研究費助成事業

今和 元 年 6 月 1 9 日現在

機関番号: 13501
研究種目:基盤研究(C)(一般)
研究期間: 2016 ~ 2018
課題番号: 16K01352
研究課題名(和文)レーザーパルス形状制御CO2レーザーによる歯・歯槽骨・骨の修復・再生の研究
研究課題名(央文)Study of repair and regeneration of tooth, alveolar bone and bone by CO2 laser with controlled laser pulse waveform
研究代表者
宇野 和行(UNO, Kazuyuki)
山梨大学・大学院総合研究部・准教授
研究者番号:20550768
交付決定額(研究期間全体): (直接経費) 3,600,000円

研究成果の概要(和文):レーザーパルス形状が制御可能なCO2レーザーを用いた骨の修復と余分なダメージを 与えない歯牙の切削の研究を行なった.骨の修復の研究では,尖頭パルス幅360 ns,テール長92.6 µs,尖頭パ ルスに対するテールのエネルギー比1:80のテール付き短パルスのCO2レーザーをウサギの鼻骨表面に照射するこ とにより,鼻骨表面ではなく,上顎洞付近に骨芽細胞の形成を観測した.歯牙の切削の研究では,尖頭パルス幅 337 ns,テール長180 µs,尖頭パルスに対するテールのエネルギー比1:20のテール付き短パルスのCO2レーザー を人の抜歯歯牙に照射することにより,従来よりも高効率で,炭化のない切削を実現した.

研究成果の学術的意義や社会的意義

研究成果の学術的意義や社会的意義 本研究成果は,CO2レーザーの制御技術を用いた歯科口腔外科学における非侵襲・低侵襲な治療が可能なことを 示すものである.インプラント治療において歯を支える歯槽骨の修復・再生は重要な課題である.本研究では, 従来よりも熱影響の低い短パルスCO2レーザーでも,骨芽細胞が形成されることが明らかとなった.また,本研 究では,従来の技術では歯牙に炭化を与えるために歯牙への治療には使用されていないCO2レーザーにおいて, 従来よりも熱影響の低い短パルスCO2レーザーを使用し,炭化のない切削を実現した.CO2レーザーの制御によ り,国内外の研究者と比べて,エナメル質と象牙質ともに数倍から数十倍の高効率切削を実現した.

研究成果の概要(英文):We researched bone repair and tooth drilling by a CO2 laser with controlled laser pulse waveform. In bone repair, when the CO2 laser pulse with the spike pulse width of 360 ns, the pulse tail length of 92.6 μ s and the energy ratio of the spike pulse to the pulse tail of 1:80 irradiated the surface of a rabbit nose bone, osteoblasts were formed near the maxillary sinus but not on the surface of the nasal bone. In tooth drilling, when the CO2 laser pulse with the spike pulse width of 337 ns, the pulse tail length of 180 μ s and the energy ratio of the spike pulse to the pulse tail of 1:20 irradiated the surface of an extraction tooth of human, high efficient drilling without carbonization was realized.

研究分野: CO2レーザー

キーワード: CO2レーザー レーザー医療 歯科口腔外科学

E

様 式 C-19、F-19-1、Ζ-19、CK-19(共通)

1.研究開始当初の背景

(1) CO₂ レーザーによるレーザー医療

CO₂ レーザー(波長 9.2-11.4 μm)は,水と硬組織(リン酸カルシウム)によく吸収されるた め,医療応用が多く研究され,臨床において使用されている.CO2レーザーは,CW(連続波) 発振と長パルス発振(数us から数 ms のパルス幅), テール付き短パルス発振(100 ns の尖頭パ ルス幅,数usから数十usのパルステール長)¹⁻⁴⁾,テールフリー短パルス発振(数 nsから数百 ns のパルス幅)^{1,4}が可能である.医療研究や臨床において,装置の簡便性やコスト等により, CW 発振もしくは長パルス発振しか使用されていない.CW 発振や長パルス発振は,照射部へ の熱影響が大きく炭化やクラックが生じるため,一部の医療にしか使用できていない 5-9.短パ ルス CO2 レーザーでは,照射部への熱影響が小さく,照射部へのダメージが少なく,水や硬組 織の吸収を利用可能である.しかし,これまでは,短パルス CO2 レーザーが手術室に搬入でき るような小型でないことや医師が自由に使用できるような簡単な装置ではないことから、照射 部への熱影響を与えない短パルス CO2 レーザーによる医療研究はほぼなされていない ⁹.

(2) レーザーパルス波形が制御可能な軸方向放電励起 CO₂ レーザー

研究代表者は,近年,1台のレーザー装置により,レーザーパルス波形(尖頭パルスとパル ステール)が制御可能な軸方向放電励起 CO2 レーザーの開発を行なった. Fig. 1 は軸方向放電 励起 CO2 レーザーの概略図である.レーザー装置は,手術室でも利用可能なテーブルトップサ イズの装置である.Fig.2は,1台のCO2レーザー装置から出力されるレーザーパルスの一例で ある.研究代表者の CO2 レーザーでは,長パルス発振とテール付き短パルス発振,テールフリ ー短パルス発振が可能である.短パルス CO2 レーザー医療では, 尖頭パルスは非熱治療, パル ステールは熱効果と考えられている.CO2 レーザーのパルステールが治療に及ぼす影響の定量 的な調査は,まだ行われていない.

Fig. 1. 軸方向放電励起 CO₂ レーザー.

Fig. 2. CO₂ レーザーパルスの一例.

(3) CO₂ レーザーによる歯・歯槽骨・骨の再生治療

歯を支えている歯槽骨は,歯の萌出とともに形成され歯の消失とともに消失する.歯周病等 による歯槽骨の欠乏は抜歯の原因となる.また,抜歯後のインプラント(人工歯根)治療の可 否は,歯槽骨の骨量が重要となる.骨量不足の場合,現在では,骨欠損部位への人工骨補填材 (β-TCP,β-リン酸三カルシウム)の投与や骨移植が行われているが,患者への負担が大きい. そこで,近年,レーザー照射による骨の再生治療が注目され,2012年に CW 発振 CO2 レーザー によるインプラント治療の一環として骨の再生が報告された 5. 本研究では,照射部に熱的ダ メージを与えない短パルス CO2 レーザーを使用し , 尖頭パルスとパルステールのエネルギー比 や総照射強度,照射対象(動物の種類,照射部位)に依存する歯・歯槽骨・骨の修復・再生の 特性を調査し,骨再生に効果的なレーザーパルスと骨再生のメカニズムの検討が目的である.

(4) CO₂ レーザーによる歯牙の切削

現在,歯科治療において,CO2 レーザーは軟組織の治療(切開,蒸散,凝固)に利用されて いる.軟組織の治療に使用されている CO2 レーザーは CW(連続波)や長パルス(パルス幅数) +μs から数 ms)であり,硬組織への照射では炭化やひび割れなどが生じる¹⁰⁻¹²⁾.このため, 現在, CO2 レーザーによる硬組織の治療は認可されていない.しかし,短パルス(パルス幅約) 100 ns)の CO₂ レーザーでは, 硬組織の炭化のない切削が可能である¹²⁾.本研究では,工学部 の実験室において研究代表者が実施可能な研究として、照射部に熱的ダメージを与えない短パ ルス CO2 レーザーによる人の抜歯歯牙の切削特性の調査も目的の一つである.

2.研究の目的

本研究の目的は,テール付き短パルスのCO2レーザーの照射による新生骨形成の調査と歯牙 の切削特性の調査である。

3.研究の方法

(1) テール付き短パルスの CO₂ レーザーの照射による新生骨形成の調査

本実験は、山梨大学医学部にて、歯科口腔外科学講座の諸井明徳講師(分担者)と高山明裕 医員の協力のもとに行われた.

本実験には、軸方向放電励起 CO2 レーザーと多関節ミラーによる導光パイプ 焦点距離 50 mm

の ZnSe レンズ,動物が用いられた.Fig.3は,CO₂レーザーから出力されたレーザーパルス波 形を示す.レーザーパルス波形は,尖頭パルス幅360 ns,パルステール長92.6 µs,尖頭パルス 部分のエネルギーに対するパルステール部分のエネルギーの比1:80のテール付き短パルスと した.CO₂レーザーは繰り返し周波数50 Hz で出力され,ZnSe レンズにより集光された.レー ザービームはアウトフォーカスでビーム径4 mmに拡大され,1パルスあたりの照射面のフル エンスは333 mJ/cm²とした.実験では,265 パルス照射による総照射フルエンス88 J/cm²と662 パルス照射による総照射フルエンス220 J/cm²,1324 パルス照射による総照射フルエンス441 J/cm²,1986 パルス照射による総照射フルエンス661 J/cm²を実験条件とした.動物には,日本 白色家兎(オス,24-30 週齢)を使用した.実験では,兎に麻酔し,鼻周辺を剃毛,切開し, レーザー照射した後に,縫合し,8週間後もしくは16週間後に屠殺し,切片を作成した.切片 の評価では,光学顕微鏡で取得したサンプルの画像情報と画像解析ソフト(ImageJ)を用いた 新生骨の既存骨に対する面積率による組織形態学的検討を行なった.

Fig. 3. 新生骨形成の調査におけるレーザーパルス波形. (a)は尖頭パルス部分の拡大図,(b)はレーザーパルスの全体図を示す.

(2) テール付き短パルスの CO₂ レーザーの照射による歯牙の切削特性の調査

本実験には,軸方向放電励起 CO₂ レーザーと CaF₂ 減衰器,焦点距離 50 mm の ZnSe レンズ, 人の歯牙が用いられた.Fig.4は,CO₂ レーザーから出力されたレーザーパルス波形を示す.レ ーザーパルス波形は,尖頭パルス幅 337 ns,パルステール長 180 µs,尖頭パルス部分のエネル ギーに対するパルステール部分のエネルギーの比 1:20 のテール付き短パルスとした.CO₂ レー ザーは ZnSe レンズにより集光され,焦点面に設置されたサンプル表面に照射された.サンプ ルには,山梨大学医学部歯科口腔外科学講座の提供による自然乾燥状態の人の抜歯歯牙が用い られた.サンプル表面におけるビーム径は484 µm であり,CaF₂減衰器により,フルエンスは 21.5 J/cm² または 13.7 J/cm², 6.4 J/cm² に調整された.本調査では,1パルス照射が用いられた.

Fig. 4. 歯牙の切削特性の調査におけるレーザーパルス波形. (a)は尖頭パルス部分の拡大図,(b)はレーザーパルスの全体図を示す.

4.研究成果

(1)テール付き短パルスの CO₂ レーザーの照射による新生骨形成の調査

Fig. 5 は,総照射フルエンス 88 J/cm²のサンプルのヘマトキシリン・エオジン染色を示す. Fig. 5 は,1パルスあたり 333 mJ/cm²,繰り返し周波数 50 Hz,照射パルス数 265 パルス,総照 射フルエンス 88 J/cm²におけるテール付き短パルスの CO₂ レーザーの照射により,頭蓋表面で はなく,上顎洞付近に骨芽細胞が形成されたことを示す.Fig. 6 は,新生骨の既存骨に対する 面積率の総照射フルエンス依存特性を示す.本実験では,総照射フルエンスの最も低い 88 J/cm² において,最も効率よく骨芽細胞が形成された.総照射フルエンスの高い条件では,照射部の 炭化が大きかったため.熱により骨組織が破壊され,新生骨の生成率が減少したと考えられる.

1パルスあたりのフルエンスを減少した 52.5 mJ/cm²の照射実験では,上顎洞付近ではなく頭 蓋表面付近に骨芽細胞が観測された.このため,レーザー照射による骨芽細胞の形成なのか, レーザー照射のダメージによる骨芽細胞の飛散なのか,明確に分からなかった.上述の通り,1 パルスあたりのフルエンス 333 mJ/cm²の照射実験では,頭蓋表面ではなく上顎洞付近に骨芽細 胞が観測された.最近,1パルスあたりのフルエンスを増加した 650 mJ/cm²の照射実験を行な った.本実験は,1 パルスあたりのフルエンスを増加し,照射回数を低減することにより,レ ーザー照射による熱の生成を抑え、レーザーによる効果が向上するという考えのもと行なった. 動物の生存期間のために、まだ切片サンプルを作成していない、今後も引き続き研究を行うこ とにより、新生骨の生成のための CO2 レーザーの条件や CO2 レーザーによる新生骨の形成メカ ニズムの解明を目指す.

Fig. 5.88 J/cm² 照射サンプルのヘマトキシリン・エオジン染色. (a)は8週後,(b)は16週後を示す.

(b)

(a)

Fig. 6. 新生骨の既存骨に対する面積率の総照射フルエンス依存特性. (a)は8週後,(b)は16週後を示す.

(2) テール付き短パルスの CO₂ レーザーの照射による歯牙の切削特性の調査

Fig. 7 は,1パルス照射による切削加工におけるエナメル質の表面写真である.本実験ではサンプルは全て自然乾燥状態であるが,全てのエナメル質のサンプルにおいて加工部分の表面に炭化は生じなかった.エナメル質はビッカース硬度408 kgf/mm²と硬い材質であるが,エナメル質はCO₂レーザーの波長を吸収するため,自然乾燥状態のサンプルでも,CO₂レーザー照射により切削可能である.Fig. 8 は,1パルス照射による切削加工における象牙質の表面写真である.本実験ではサンプルは全て自然乾燥状態であるが,フルエンス13.9 J/cm²以下の象牙質のサンプルにおいて加工部分の表面に炭化は生じなかった.フルエンス21.5 J/cm²では,加工部分の淵に少し変色が見られた.しかし,歯牙を湿潤状態にするか,レーザーパルスのテールエネルギーを低減すれば,変色は抑えられると考えられる.

Fig. 7. エナメル質の表面写真 . (a)は21.5 J/cm²,(b)は13.9 J/cm²,(c)は6.4 J/cm²,スケールバーは200 μm を示す .

Fig. 8. 象牙質の表面写真 . (a)は21.5 J/cm²,(b)は13.9 J/cm²,(c)は6.4 J/cm²,スケールバーは200 μm を示す.

Fig. 9. エナメル質と象牙質の切削深さのフルエンス依存特性. 丸はエナメル質,四角は象牙質を示す.

<参考文献>

1) K. Uno, et al., "Glass drilling by longitudinally excited CO₂ laser with short laser pulse", Proceedings of SPIE, 9350, 93501E (2015).

2) K. Uno, et al., "Short-pulse CO₂ laser with longitudinal tandem discharge tube", Review of Scientific Instruments, 85, 103111 (2014).

3) K. Uno, et al., "Longitudinally excited CO₂ laser with short laser pulse for hard tissue drilling", Proceedings of SPIE, 8929, 89290L (2014).

4) K. Uno, et al., "Longitudinally excited CO₂ laser with tail-free short pulse", Proceedings of SPIE, 9266, 92661U (2014).

5) T. Naka, et al., "Application of Laser-Induced Bone Therapy by Carbon Dioxide Laser Irradiation in Implant Therapy", International Journal of Dentistry, 2012, 409496 (2012).

6) D. Fried, et al., "Thermal and Chemical Modification of Dentin by 9-11-μm CO₂ Laser Pulses of 5-100-μs Duration", Lasers in Surgery and Medicine, 31, 275-282 (2002).

7) H. Doppe, et al., "Peri-implant with the CO_2 laser: In vitro and in vivo results", Medical Laser Application, 20, 61-60 (2005).

8) M. Esteves-Oliveira, et al., " CO_2 Laser (10.6 μ m) Parameters for Caries Prevention in Dental Enamel", Caries Research, 43, 261-268 (2009).

9) D. Fried, et al., "Dental hard tissue modification and removal using sealed transverse excited atmospheric-pressure lasers operating at λ =9.6 and 10.6 µm", Journal of Biomedical Optics, 6, 231-238 (2001).

10) K. H. Chan, et al., "A new sealed RF-excited CO_2 laser for enamel ablation operating at 9.4-µm with a pulse duration of 26-µs", Proceedings of SPIE, 9692, 969206 (2016).

11) W. S. Gora, et al., "Microsecond enamel ablation with $10.6\mu m CO_2$ laser radiation", Proceedings of SPIE, 9692, 969205 (2016).

12) D. Fried, et al., "Thermal and Chemical Modification of Dentin by 9-11-μm CO₂ Laser Pulses of 5-100-μs Duration", Lasers in Surgery and Medicine, 31, 275-282 (2002).

5.主な発表論文等

〔雑誌論文〕(計 4 件)

1) <u>Kazuyuki Uno</u>, Jianhui Li, Hayato Goto, Takahisa Jitsuno, "Longitudinally excited CO₂ laser with short laser pulse and high quality beam", Proceedings of SPIE, 10518, 105181Y (2018). (査読あり) 2) <u>Kazuyuki Uno</u>, Takahisa Jitsuno, "Control of laser pulse waveform in longitudinally excited CO₂ laser by adjusting of excitation circuit", Optics & Laser Technology, 101, 195-201 (2018). (査読あり) 3) <u>宇野和行</u>, 實野孝久, 「軸方向放電励起 CO₂ レーザーの開発と人の歯の高効率切削」, レーザ ー学会第 517 回研究会報告, RTM-18-01 (2018). (査読なし)

4) <u>Kazuyuki Uno</u>, Takuya Yamamoto, Tetsuya Akitsu, Takahisa Jitsuno, "Dental hard tissue drilling by longitudinally excited CO₂ laser", Proceedings of SPIE-OSA, 10417, 104170U (2017). (査読あり)

〔学会発表〕(計 5 件)

1) <u>宇野和行</u>, 實野孝久, 「軸方向放電励起 CO₂ レーザーの開発と人の歯の高効率切削」, レーザ ー学会第 517 回研究会, RTM-18-01, 山梨大学, 山梨県甲府市, 2018 年 2 月 28 日.

2) <u>Kazuyuki Uno</u>, Jianhui Li, Hayato Goto, Takahisa Jitsuno, "Longitudinally excited CO₂ laser with short laser pulse and high quality beam", SPIE Photonics West, LASE, 10518-73, The Moscone Center, San Francisco, U.S.A. January 30 (2018).

3) <u>宇野和行</u>, 實野孝久, 「軸方向放電励起 CO₂ レーザーの開発と応用」, レーザー学会第 38 回 年次大会, 24aVII8, 京都市勧業館みやこめっせ, 京都府京都市, 2018 年 1 月 24 日.

4) <u>Kazuyuki Uno</u>, Takuya Yamamoto, Tetsuya Akitsu, Takahisa Jitsuno, "Dental hard tissue drilling by longitudinally excited CO₂ laser", ECBO2017, EW3A.24, Messe Munchen, Munich, Germany, June 28 (2017).

5) <u>宇野和行</u>,山本拓哉,秋津哲也,實野孝久,「高ビーム品質・短パルス CO₂レーザーによる 人の歯の切削」,第 64 回応用物理学会春季学術講演会,16p-P1-7,パシフィコ横浜,神奈川県 横浜市,2017 年 3 月 16 日.

〔図書〕(計 0 件)

〔産業財産権〕 ○出願状況(計 0 件)

○取得状況(計 0 件)

〔その他〕

ホームページ等

山梨大学工学部電気電子工学科宇野研究室:http://www.ccn.yamanashi.ac.jp/~kuno/index.html

研究会

<u>宇野和行</u>,「CO₂レーザーとレーザー加工・医療」,第1回山梨サロン(シグマ光機株式会社と 山梨大学の宇野,埼玉医科大学の丸山直子助教との共同開催),山梨大学,山梨県甲府市,2018 年10月27日.

6.研究組織

(1)研究分担者
研究分担者氏名:諸井 明徳
ローマ字氏名:MOROI, Akinori
所属研究機関名:山梨大学
部局名:大学院総合研究部
職名:講師
研究者番号(8桁):60645141

(2)研究協力者 研究協力者氏名:秋津 哲也 ローマ字氏名:AKITSU, Tetsuya

研究協力者氏名:河阪 明彦 ローマ字氏名:KOUSAKA, Akihiko

研究協力者氏名:高山 明裕 ローマ字氏名:TAKAYAMA, Akihiro

研究協力者氏名: 實野 孝久 ローマ字氏名: JITSUNO, Takahisa

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属されます。