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Study of color distribution ratios on colored graph structures

Suzuki, Kazuhiro
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Let g and f be mappings from a color set to the set of non-negative

integers. A graph with at least g(c) and at most f(c) edges for each color c is said to be (g,f)
-chromatic graph. In this study, we showed a sufficient condition for an edge-colored complete graph
to have a (g,T)-chromatic spanning forest with exactly m components, and a necessary and sufficient
condition for an edge-colored complete graph G to have a spanning tree whose the color distribution
ratio is the same as that of G. Moreover, we showed that any edge-colored complete graph G has a
spanning tree whose the color distribution ratio is similar to that of G. We conjectured that any
edge-colored complete graph G of order 2n can be decomposed into n edge-disjoint spanning trees
where each tree has a color distribution ratio similar to that of G, and showed that it is true for
a special coloring of G.
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