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CNNs(Convolutional Neural Networks)

While the paradigm shift of wearable technology progressed, this research
aimed to develop a wearable non-invasive biological control system monitoring device for health
management. In the development, we proposed and verified an algorithm for estimating significant
physical quantities that characterize the functions of biological control systems such as delay time

and time constant of the musculoskeletal system and nervous system in a short time, and extracted
the problems. The newly proposed estimation method is a hybrid method that supplements the
conventional parametric identification method with CNNs (Convolutional Neural Networks). Also, in
the research, it was shown that the knowledge obtained this time is one of the technologies that
contribute to the performance improvement, downsizing, and cost reduction of the estimation device.
We also pointed out the problem of this estimation method and showed that its application field is
limited.
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CNNs(Convolutional Neural
Networks)
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Calculation of error rate (For error validiation data, error
rate between R, value obtained by parametric
identification and R, estimated value by CNNSs)
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